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1. Introduction and Motivation
Typefaces comprise an important component of the aesthetic
quality of any written work. With the rise of printers and
digital word processors has come a tremendous diversity of
typefaces, each slightly different in visual effect and design.
With this growing number of choices, there has been an
increasing need to intelligently categorize and characterize
typefaces for searching, grouping, pairing, and more. Most
approaches thus far have categorized typefaces by their font
styles—for example, ‘bold’ or ‘italic’—as well as other
typographic attributes, such as ‘all-capitals’ or ‘cursive’.
However, while these characteristics can be descriptive for
some fonts, these aspects fail to capture some of the more
aesthetic qualities—what we call semantic attributes—that
we as humans associate with typefaces in abstract senses,
such as ‘artistic’, ‘boring’, or ‘gentle’, which may be desir-
able when one is looking for typefaces that have particular
semantic attributes. We are thus interested in applying ma-
chine learning to build on existing work for generalizing
the representation and characterization of typeface semantic
attributes beyond existing semantic attribute datasets.

In particular, our aim is to improve on the work of Ku-
lahcioglu & de Melo (2018) by building a model that can
accurately predict an associated semantic attribute vector
for a given typeface based on existing human-labeled data
(O’Donovan et al., 2014) and font embeddings. In our case,
the semantic attribute vector is a 31-dimensional vector
where each entry is a value between 0 and 1 that represents
how strongly the given semantic attribute describes the type-
face. To this end, our task is to extend an open-source
dataset called FontJoy†—which contains font names and
corresponding rasterized images, of which there are 1883
(1861 unique)—by inducing a dataset of the corresponding
font semantic attributes for each FontJoy font using 161
semantically labeled fonts from the dataset by O’Donovan
et al. (2014). We only use the 161 of the 200 fonts in this
dataset (e.g. ‘Source Sans Pro Semibold’) that overlap be-
tween both datasets. We also introduce a novel downstream
task of semantic attribute regression to measure how effec-
tively models can predict the 31 semantic attributes given

†See FontJoy, https://github.com/Jack000/fontjoy

rasterized images of a typeface, along with our experimental
findings for this task.

The input to our dataset induction algorithm is the dataset
of 161 human-labeled 31-dimensional real-valued seman-
tic attribute vectors with entries between 0 and 1 for each
typeface in the semantic attribute dataset of O’Donovan
et al. (2014), along with the FontJoy embeddings for the
1861 unique typefaces to be used in dataset induction. The
outputs are the corresponding 31-dimensional semantic at-
tribute vectors for all 1861 FontJoy typefaces.

The input to our downstream semantic attribute prediction
task is the full induced dataset of size 1861 from our dataset
induction task. Our train-validation-test split is 70-10-20,
respectively. Given rasterized images of aligned representa-
tive glyphs from the training fonts in FontJoy—see Figure
1—along with their ground-truth (the induced dataset seman-
tic attribute vectors from above), our model aims to learn
the parameters used to regress the 31-dimensional semantic
attribute vector for a given font in inference.

2. Related Work
Prior work for analysis and generation of typefaces has been
largely focused on typographic attributes and less on seman-
tic attributes. These works use unsupervised methods to
cluster images of typefaces into groups with similar appear-
ances in contexts such as OCR (Öztürk et al., 2000; Avilés-
Cruz et al., 2004) and in isolated typeface data (Azadi et al.,
2017; Zhang et al., 2018; Lin et al., 2019; Lopes et al., 2019).
While strong for capturing typographic font attributes, these
works unfortunately do not handle the level of abstraction
of semantic attributes, which may be more useful for human
purposes. The primary works that have focused on seman-
tic attributes mostly focus on crowd-sourcing the semantic
datasets themselves (O’Donovan et al., 2014) or inducing
a larger dataset from human labels using simple k-nearest
neighbor (k-NN) methods (Kulahcioglu & de Melo, 2018).
In this paper, we aim to improve on this work for dataset
induction using non-parametric supervised learning meth-
ods to create more large-scale, accurate semantic attribute
datasets. In addition, prior work has not discussed semantic
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Figure 1. Examples of input images of typefaces in the dataset that
vary in their semantic attributes. All images are grayscale since
they are antialiased black-and-white images.

attribute prediction from visual font representations, a novel
downstream task that our work introduces.

Finally, state-of-the-art systems have utilized deep networks
to learn latent spaces for typefaces to aid in typeface gen-
eration, interpolation, and font style transfer (Azadi et al.,
2017; Zhang et al., 2018; Lopes et al., 2019; Lin et al., 2019).
While these systems are well-suited to create powerful la-
tent spaces for typefaces, they are not as interpretable due to
their end-to-end nature. We posit that semantic attribute vec-
tors are a more interpretable and thus useful set of attributes
to aid typeface searching, selection, and pairing.

3. Method
3.1. Dataset Overview

As mentioned prior, our dataset consists of rasterized im-
ages, FontJoy embeddings, and human-labeled semantic
attributes for 161 fonts. Examples of rasterized images are
shown in Figure 1. The FontJoy embeddings were obtained
using a deep Convolutional Neural Network (CNN) font
embedding space model, reduced to 200-dimensional vec-
tors via PCA. The task is to use the FontJoy embeddings
and semantic attributes for these 161 fonts to induce seman-
tic attributes for all 1861 fonts in FontJoy. Therefore, the
dataset for our downstream task will consist of rasterized
images, typographic attributes, and semantic attributes for
1861 distinct typefaces.

3.2. k-NN Semantic Attribute Induction

We experiment with different data induction methods
to regress the semantic attribute vector for each type-
face in FontJoy. As our baseline, we replicate the best-
performing dataset induction method reported by Kulah-
cioglu & de Melo (2018) for large-scale semantic signature
induction with a k-NN learning model. Kulahcioglu &
de Melo (2018) perform k-NN regression by calculating
the distance between FontJoy embeddings using k = 4, the
cosine distance metric, and relative distance weighting to

induce the larger semantic attribute dataset from the small
crowdsourced dataset of O’Donovan et al. (2014).

To perform k-NN, we use the FontJoy metadata and font
names from the small 200 font O’Donovan et al. (2014)
dataset to determine the intersection between the two
datasets: 161 common fonts. Then, to predict semantic
attributes for all 1861 fonts in FontJoy, we use the font em-
bedding vectors obtained from the FontJoy CNN model as
the input vectors on which to perform k-NN, and we take the
ground-truth semantic attributes to be the data labels. Thus,
the averaging over nearest neighbors in inference yields
the averaged O’Donovan dataset semantic attributes of the
nearest font neighbors in the FontJoy embedding space. The
resulting trained model is used to induce the typographic
and semantic attributes for all 1861 fonts in FontJoy.

In order to improve on the baseline model, we formulated
and tested a few more k-NN models for dataset induc-
tion. We performed grid search over multiple values of
k (from 1 to 10), three distance metrics—cosine, Manhat-
tan, and Euclidean—and weighting schemes for the near-
est neighbors—inverse distance, unweighted, and relative
weighting. The highest-performing model was found to be
the model with k = 7, a cosine distance metric, and inverse
distance weighting. The cosine distance metric is detailed in
equation (1), and the k-NN weighting of nearest neighbors
fi w.r.t. a query embedding f ′ with the inverse distance
weighting wi (before normalization) are shown in equation
(2). For reference, relative distance weighting is shown in
equation (3). Results are discussed in section 4.
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3.3. Support Vector Regressor

For our second approach, we use Support Vector Regressors
(SVRs), a model related to SVMs suited to the context of
our regression problem. SVRs produce real-valued output
while maintaining the main feature that characterizes the
algorithm: maximal margin. Since the output is a real value,
a margin of tolerance (epsilon) is set in approximation to
the SVM for the problem.

In non-linear SVR models, the kernel functions transform
the data into a higher dimensional feature space to make
it possible to perform linear separation of the data. For
our experiments, we choose the non-linear Gaussian Radial
Basis Function (RBF), given that the FontJoy embeddings
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are high-dimensional and require a non-linear model. The
RBF kernel function is shown in equation (4).

K(x, x′) = exp
(
−γ||x− x′||2

)
. (4)

We perform exhaustive cross-validation grid search over the
reasonable hyperparameter ranges of γ (1e-3 to 1e-9) and
C (1e-2 to 1e4) to tune a SVR model for each of the 31
semantic attributes. We choose parameters with the highest
mean cross-validation scores. Thus, each SVR model takes
a FontJoy embedding as input and outputs a real-valued
number for its prediction of the value of the corresponding
attribute. Intuitively, γ defines how far the influence of a
single training example reaches, with lower values meaning
farther. They can be interpreted as the inverse of the radius
of influence of samples the model selects as support vectors.
C behaves as a regularization parameter.

3.4. Mean-Shift Clustering

The mean-shift algorithm is a density-based clustering algo-
rithm that doesn’t require specifying the number of clusters
as a hyperparameter. We explore these algorithms because
they are cluster-shape-independent, thus not requiring any
prior assumptions on dataset structure. To perform data
induction, we mean-shift cluster the FontJoy embeddings in
an unsupervised manner, and in inference, predict the cluster
of the font and take a weighted average (inverse distance)
of all of the training set fonts in the predicted cluster.

3.5. Ensembled Learning Models

For our final data induction model, to leverage the power of
the three best-performing aforementioned data induction
models (4-NN, 7-NN, and SVR), we ensemble a meta-
estimating voting regressor that takes a weighted aver-
age over the individual predictions of these models. The
weighted average is inversely proportional to the error
achieved by the model. We also try a stacked regressor
that stacks together the predictions of individual estimators
to feed as input to a final linear regression estimator.

The error metric we use to measure the quality of each of
these models in accurately inducing each of our resulting
datasets for the 1861 semantic font attribute vectors, is the
leave-one-out cross-validation error procedure of Kulah-
cioglu & de Melo (2018). We calculate this model-invariant
metric for each data induction model m. We discuss this
metric more precisely in section 4.

3.6. Downstream Semantic Vector Prediction Methods

To investigate how well models can predict semantic at-
tributes given the rasterized images for a particular typeface,
we test two baseline models and our proposed model.

We use two linear regression (LR) baseline models: the

Figure 2. Proposed model architectures for semantic attribute vec-
tor prediction task: 1-step linear regressor (a), 2-step linear regres-
sor (b), and Convolutional Neural Network (c).

1-step LR and 2-step LR. The 1-step LR predicts semantic
attribute vectors directly from the pixel-linearized image
input. On the other hand, the 2-step LR predicts semantic
attribute vectors sequentially: it first predicts typographic
attribute vectors (6-dimensional vectors denoting the at-
tributes ‘capitals’, ‘cursive’, ‘display’, ‘italic’, ‘monospace’,
‘serif’ from the O’Donovan et al. (2014) dataset, which we
also induce as aforementioned) from the linearized image in-
put, and then predicts the semantic attribute vectors from the
typographic attribute vectors. We try this 2-step LR model
since results from Kulahcioglu & de Melo (2018) suggest
that font categories (which are related to typographic at-
tributes) are correlated with certain semantic attributes. We
wish to compare the performance of this model to a 1-step
LR model to explore the predictive power of typographic at-
tributes as an intermediate interpretation of the image input.

Our proposed model is a deep Convolutional Neural Net-
work (CNN) with two convolutional layers, along with batch
normalization and ReLU activations. We resize all input
images to 64 × 64 grayscale images (1 channel) and the
output layer of 31 semantic attributes comes after the final
fully connected layer. Figure 2 illustrates the specific archi-
tectures for each of our semantic vector prediction models.

4. Results and Discussion
4.1. Dataset Induction Results and Discussion

To evaluate our dataset induction models, we calculate the
induction error for each model m using leave-one-out cross-
validation per Kulahcioglu & de Melo (2018), where error
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Model Error
Lowest Error Mean-Shift 0.099

Kulahcioglu & de Melo (2018) KNN 0.084
Lowest Error KNN 0.080
Lowest Error SVR 0.079

Lowest Error Ensemble 0.076

Table 1. Data Induction Errors for each of our highest-performing
models, along with baseline model Kulahcioglu & de Melo (2018).

is measured as the average in difference over semantic at-
tributes between the predicted and the ground-truth semantic
attribute vectors for the 161 fonts that are common between
the FontJoy dataset and the dataset by O’Donovan et al.
(2014). To be more precise, let F161 be the set of font em-
bedding vectors in FontJoy with known font attribute labels,
let f be a font embedding vector from the FontJoy CNN,
let â be a predicted 31-dimensional semantic attribute vec-
tor, and let a be a ground truth 31-dimensional semantic
attribute vector. The error metric is calculated as follows.

• For each font embedding f ∈ F161, we train m on
F161 f and predict â for f . Then, we take the element-
wise difference between â and the ground truth seman-
tic attribute vector a to calculate a 31-dimensional error
vector over semantic attributes: e = â− a.
• To get a total error estimate over predictions for m, we

average over the element-wise absolute values of the e
vectors obtained for each of the 161 fonts f ∈ F161 to
obtain the average error ē.

• The final real-valued average model error is the average
over the attributes, the 31 elements of ē.

The results for each of our data induction models is shown in
Table 1. Here, we notice that our ensemble model performs
the best in terms of overall error, which makes sense, since
it has the extra benefit of taking a weighted vote among
three high-performing models and is thus more robust to the
weaknesses of each. Notably, all of our highest-performing
models outperform the baseline from the literature. We
also plot the k-NN Dataset Induction Error as a function
of k and each of the weighting schemes in Figure 3. The
inverse distance metric performs the best across the board
and performs best at k = 7. The plots for the Manhattan
and Euclidean distance metrics look similar.

We also noticed that k-NN distance metrics that consider
magnitudinal difference as well as angular distance, in par-
ticular the Manhattan and Euclidean distance, performed
more poorly than distance metrics that consider only angu-
lar distance, like cosine distance. This is likely due to the
high-dimensionality of the font embedding vectors.

The k-NN inverse distance weighting scheme also outper-
formed the relative weighting scheme. We postulate this

Figure 3. Dataset induction error for all k-NN experiments using
the cosine distance for each of the three nearest neighbor weighting
schemes across values of k. The inverse distance metric performs
the best across the board and performs best at k = 7.

Figure 4. Dataset Induction Error of each model for each of the
31 semantic attributes. The ensemble model (orange) performs
best overall as compared to the baseline (dark blue), our best-
performing k-NN (cyan), and our best SVR (green).

is because weighting vectors that lie closer to the queried
vector much higher than those farther from it—inversely
proportional rather than proportional—reflects the fact that
closer vectors in the FontJoy embedding space should hold
more weight in determining semantic similarity.

In addition, the SVR outperforms the k-NN models. We be-
lieve this is because our task requires compression of higher-
dimensional embedding information into lower-dimensional
distance metrics. For k-NN, the cosine similarity metric
completely discards magnitude information and purely uses
angular distance. Conversely, the SVR kernel must trans-
form embeddings into higher-dimensional space to make the
data linearly characterizable, which we believe may allow
it to preserve a more optimal combination of the original
higher-dimensional information.

In Figure 4, we also plot the Dataset Induction Error for each
of the 31 semantic attributes to visualize the performance
of our models against the baseline. We also qualitatively
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evaluate the results of our dataset induction. In Figure 5, we
plot the result of PCA (reduced 31-dimensional semantic
vectors to 3 dimensions) on the original 161-size (a) and
ensemble-induced (b) datasets. We then color each of these
semantic vectors by the value of an example semantic at-
tribute, ‘graceful’. Upon visual examination, we make two
observations: first, the induced dataset colors, or attribute
values, follow the general trend of the values in the original
dataset. This suggests that the induction successfully re-
flects an overall spectrum of this attribute across the original
dataset. Second, the induced dataset has smooth color tran-
sitions, which is a profound result of performing clustering
using the FontJoy embeddings of nearby points. This shows
that the FontJoy embeddings are valuable predictors of the
relative differences in semantic attributes across fonts.

(a)

(b)
Figure 5. Reduced-dimensionality semantic vectors colored by the
‘graceful’ semantic attribute value for the original human-labeled
dataset (a) and ensemble model induced dataset (b).

4.2. Semantic Vector Prediction Results and Discussion

For each of our three semantic vector prediction models, we
compute the root mean squared error (RMSE) and coeffi-
cient of determination R2 for both training and validation,
as shown in Table 2. Most notably, the CNN outperforms
both linear baseline models. We believe this is because
the baselines cannot leverage spatial information since the
image pixels must be linearized for linear regression. The
convolutional filters can characterize glyphs by learning the
relationships between features in a spatial sense, enabling it
to “see” edges, curves, and higher-level characteristics.

In comparing the two baselines, we found that the 2-step
LR model had a lower RMSE than the 1-step LR model.
This result suggests that mapping the rasterized image input

Model RMSEtr R2
tr RMSEval R2

val

1-step LR 1.34753 0.99999 0.07974 0.71879
2-step LR 0.10327 0.50344 0.11761 0.41222

CNN 0.04263 0.88317 0.06434 0.81176

Table 2. Results from experiments for the three proposed models in
training (tr) and validation (val), with best performances bolded.

down to the intermediate typographic attributes improves the
performance of the linear regression model. We can interpret
this by the loose analogy for the two-step linear model as a
neural network with a human-defined 6-dimensional hidden
space; mapping the rasterized image input to typographic
attributes acts as a forcing function that reduces the input
to an intermediate typographic attribute vector subspace
that has been shown to be closely linked with semantic
signatures (Kulahcioglu & de Melo, 2018). While it doesn’t
leverage spatial information, it still learns some abstract
features of the fonts before predicting semantic attributes,
allowing it to outperform the single step model. Moreover,
it appears that the 1-step LR overfit during training, which
we believe is due to an imbalance in the high-dimensional
input space and low-dimensional output space.

5. Conclusion
Characterizing semantic attributes of fonts is of special in-
terest for font search, selection, pairing, and more. In this
work, we leverage the existing typeface semantic attribute
dataset from O’Donovan et al. (2014) (size 200) and deep
font CNN embeddings from FontJoy (size 1861) to improve
significantly upon prior work for inducing a larger dataset
of semantic attributes for all 1861 FontJoy fonts. We cre-
ate low-error 7-NN and support vector regressor models,
which we ensemble with the model replicated from Kulah-
cioglu & de Melo (2018) to create our lowest-error semantic
attribute induction model. We also introduce a novel down-
stream task from this resulting induced dataset of paired font
images and semantic attributes—semantic attribute vector
prediction from rasterized font images—for which we build
a convolutional neural network that outperforms our linear
regression baselines. We hope our lower-error semantic at-
tribute dataset induction can also encourage further research
in other downstream tasks related to prediction and learning
of semantic typeface attributes.

6. Future Work
For semantic vector dataset induction, we hope to fur-
ther investigate both unsupervised clustering algorithms,
such as spectral clustering, and semi-supervised algorithms
that leverage partially labeled data to induce lower-error
datasets. For our downstream task, we wish to create higher-
performing CNNs for rasterized images and investigate us-
ing LSTMs to process serialized SVG image commands.
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Contributions
S.M. implemented the project dataloaders, performed data
exploration, and created the baseline and CNN models for
the downstream task. L.Z. implemented data cleansing,
result visualization, and the nearest neighbors and SVR
approaches for dataset induction. J.G. wrote the experimen-
tation boilerplate code, the mean-shift clustering approach
for dataset induction, and the bulk of the poster and report.

Project Code. Our code can be found at the project reposi-
tory on GitHub (https://github.com/zlucia/cs229-project).
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