English-Chinese Name Machine Transliteration
Using Search and Neural Network Models

Julia Gong

Benjamin Newman

{jxgong, blnewman }@stanford.edu

Abstract—Recently, much progress has been
made on developing accurate machine translation
systems. However, because these systems focus on
translating word meanings, they don’t translate
names between languages as effectively, as name
transliteration depends on translating sound. To
address this gap, in this project, we focus on the
transliteration of English names into Chinese. We
propose many search-based approaches, as well
as sequence-to-sequence deep learning models.
We find that search-based methods outperform
deep learning ones, likely due to the relatively
small number of English names with standard
Chinese translations in the accessible dataset.
Despite determining that incorporating syllable
length heuristics and phonetic information into
the search improves performance significantly, we
are unable to generate native-speaker level transla-
tions. We hope this work provides a good starting
point for more future work in the area of machine
transliteration.

I. INTRODUCTION

While automated translation systems have made
huge leaps in accuracy in recent years, they still
lag behind in translating names that originate from
one language into the writing system of another.
Intuitively, this may be because translating names is
fundamentally different from translating other parts
of speech. Modern machine translation systems trans-
late based on word or utterance meanings, but names
do not have any intrinsic meaning, so they must be
translated on the pronunciation level. For languages
with consistent pronunciation rules, such as Spanish,
this may not be too much of a problem, but for
languages like English, it is a more difficult task.
In this work, we will investigate the possibility of
translating names written in English into the Chinese
pronunciation representation: pinyin.

Translating English names into pinyin presents
an additional challenge; many English names have
widely-accepted standard Chinese translations whose
pronunciations do not necessarily symbolically match
the English translations on paper, though they may
phonetically still sound similar. Some examples that
exhibit this behavior include:

Erasmo — ai la s1 mo
Julia — zhu li ya

Roy — luo yi
Archana — a g7 na
Matthew — ma xiu

In many ways, this task is thus more similar to
machine transliteration than machine translation.
Transliteration tasks are most often solved with
grapheme to phoneme (g2p) systems. These systems
take in written text (i.e. graphemes) and output some
representation of their pronunciations, either in the
international phonetic alphabet (IPA) or the ASCII-
friendly ARPAbet. This process is often associated
with text-to-speech software, such as accessibility
readers or personal assistants, that have to read web
content aloud. The difference between this applica-
tion and our task is that we must also take the
additional step of converting the phonemic repre-
sentation into pinyin rather than acoustic signals.
There have been a number of different approaches
toward solving these tasks in the past. These include
linear classifiers, such as support vector machines
(SVMs); automata-based methods, such as condi-
tional random fields and weighted finite-state trans-
ducers; deep learning methods, such as recurrent
neural networks with LSTM modules; and Bayesian
approaches, such as joint-sequence models and Hid-
den Markov models [1].

Our task is slightly different from g2p systems
because, instead of abstracting phonemes into a uni-
versal phonetic script (e.g. the International Phonetic
Alphabet), we must limit ourselves to valid phonemes
in Chinese. Others have attempted similar versions
of this problem, such as Wan and Verspoor, who
use a rules-based method with modest success [2].
Shao et al. use a modified version of the M2M
aligner to segment the English words [3]. Upadhyay
et al. have had good success using attention-based
RNN methods with low resource languages, a simpler
version of which we try to adopt in this work [4].

II. METHODOLOGY

We take two general approaches to solving this
problem; we create a search model and a deep learn-
ing model. For search, we propose a number of ap-
proaches based on empirical English-pinyin translit-
eration frequencies. For deep learning, we use a
recurrent neural network to find sequential features.

A. Data

We obtained 1510 common English names (both
traditionally male and female) and their Chinese
character equivalents from [5]. We then used the
online translation API GLOSBE to obtain the space-
separated pinyin for each of the characters [§]. Pinyin
is a system of the pronunciation glosses used in Man-
darin Chinese (3&i# 1) that represents its pronunci-
ation. Each pinyin consists of three components—an
initial, a final, and one of five tones. For example,
the pinyin zhuang has an initial zh, a final uang,
and first tone (the flat line above the a). Each entry
of the dataset we compiled includes the English
name, the Chinese characters of the ground truth
transliteration, the pinyin of these characters, and
the traditional gender of the name. A sample data
entry in the dataset thus might look as follows:

Alice, ZNi#2, ai 1i s1, f

B. Metric

Because we have ground-truth data, to score a
potential transliteration, we can compare it to this
ground-truth. We do so using a modified edit dis-
tance metric that we call pinyin edit distance. The
edit distance between two strings is the minimum
number of insertions, deletions, or substitutions that
it takes to transform the first string into the sec-
ond one. We represent this edit distance with the
function edit_distance(-,-). However, for our pur-
poses, we modify this metric slightly by penaliz-
ing pinyin that have the same vowels with differ-
ing tones half as much as we would if they were
completely different characters. We use the function
edit_distance,;, (-,) to denote this modified edit
distance between its pinyin arguments.

C. Baseline and Oracle

First, we define a baseline and an oracle for this
transliteration task. These give an lower and upper
bound, respectively, on how well we expect to per-
form.

1) Baseline: Our baseline algorithm provides a
lower bound on our expected performance. It uses the
following rules-based method to transliterate a name.
Given an English string, the string can be segmented
into syllables that are comprised of either a conso-
nant (C), a vowel (V), a consonant followed by vowel
(CV), or a consonant followed by a vowel and another
consonant (CVC). CVC is always preferred over CV-
C when the character after the second consonant is
another consonant (i.e. CVCV will be parsed as CV-
CV, while CVCC will be parsed as CVC-C). When
the CV and CVC rules fail to apply, the default value
of the lone character (either C or V) is used.

Next, a standardized transcription look-up table is
used to transform the segmented English names into
Chinese Characters. The table columns contain the
pinyin initials written in a the ARPABET (e.g. K, R,
ZH, SH) and the rows have the pinyin finals written
in the same form (e.g. AA, UW, AEN, THNG). The
intersection of a row and column contains a common
Chinese character corresponding to the combination
of these sounds (including cases where only a vowel
or a consonant is provided).

For each syllable in the input English string, the
baseline algorithm converts the CV, CVC, C, or V
segment from the original English string into the
corresponding IPA column (initial) and row (final)
that has the lowest edit_distance. For example,
the ‘LT’ in ‘ALICE’ has the lowest edit_distance
to the initial-final combination ‘L‘ and ‘IY*, yielding
‘LIY’, which is the chosen lookup in the table that ul-
timately yields ‘f|’. The syllable ‘LI‘ is then assigned
the character ‘]’ in the final transliteration.

When we presented our baseline with our entire
dataset, it achieved an average edit distance of ap-
proximately 3.56.

2) Oracle: For our oracle, we asked two native
Chinese speakers to independently transliterate a
list of 30 anglicized (e.g. ‘Golrokh’) or English (e.g.
‘Carly’) names to the best of their knowledge. Of
the 30 names, 12 names differed between the two
oracles, and the average distance metric between the
oracles’ answers was only 0.8333. The oracles were
very consistent with one another for the majority
of the names, and the distance metric reflects how
minute the differences were when they arose (often
being merely a tone difference). Names such as ‘Alice’
or ‘Jake’, which have known standard transcriptions,
were all correctly identified by both oracles. This
provides an upper bound for our translation.

To compare the baseline and the oracle, we pre-
sented the baseline with the same list of 30 names—
some of them common names and others English
transliterations of names in other languages (See

for a list of names). Of the 30 names as-
sessed by the oracles, none of the baseline tran-
scriptions perfectly matched the oracles’ answers.
The average edit_distance,;, between oracles was
0.8333 indicating a lot of agreement, but the average
edit_distance,,,, between each of the oracles and
the baseline was 3.4417. The disparity between these
two distances indicates that there is potential for an
improved algorithm and the development of a better
transliteration system from an English name to a
segmented pinyin string.

We take two approaches to solving this problem.
First, we formalize it as a search problem by calculat-
ing a cost for each possible transliteration and trying
to minimize this cost. Next, we treat this problem as
a classification problem, and use a recurrent neural
network with an encoder-decoder structure.

III. SEARCH MODEL

At a high level, formalizing transliteration as a
search problem involves defining a cost for every
possible pinyin representation of an English name
and choosing the transliteration with the lowest
cost. There are two basic approaches to this search
problem—one based on the edit distance metric, and
one based on a pinyin-English co-occurrence table.

For both problems, we first determine how to
assign a cost to a transcription. We want to include
frequent pinyin in names, so we create a pinyin cost
function, cost, similar to the one presented in the
reconstruct assignment. We define the cost of a
pinyin syllable to be its surprisal (— log(p), where p is
the maximum likelihood estimate of the probability
of a pinyin syllable in our data set, i.e. the number of
times the pinyin syllable appears divided by the total
number of pinyin syllables in the corpus). Because
the names are short, a unigram cost function is
sufficient and a more fine-grained bi-syllable cost
function is unnecessary.

A. Edit Distance Search

Next, we formulate the search problem. Given a
single English name, our initial thought was to first
break it up into syllables and then find the pinyin
that most closely matches each syllable. Unfortu-
nately, this turns out to not be ideal in many cases.
In our dataset, there are numerous examples of single
syllables being mapped to multiple pinyin (the ‘br’
in ‘Bruce’ maps to but 1), as well as, though much
rarer, multiple syllables being mapped to a single
pinyin (‘riel’ in ‘Ariel’ maps to li¢). To take into
account this variation, we start by considering all
possible segmentations of the given name (2" total

possibilities for an English name of length n). Even
though this approach grows exponentially with the
length of the name, names tend to be short enough
that this does not pose a significant problem. For
example, when transliterating the name BEN, we
would consider the segmentations:

{B, EN},{BE, N},{B, E, N}, and {BEN}

We denote the set of all segmentations as S.

Now, we have to calculate the cost of each segmen-
tation, S € §. We can do this by adding together the
costs of the individual subwords sw € S. This is a bit
challenging because the cost function we described
earlier provides the cost of a pinyin syllable, not of an
English sub-word. Calling the cost function directly
on the English sub-word is an option, but there will
be many English sub-words that are not possible
pinyin, and the cost function will have no way of
assigning them a cost. To this end, we ultimately
decided to assign an English sub-word a pinyin by
iterating through all the pinyin in our dataset and
finding the pinyin that minimizes the product:

edit_distance(subword, pinyin) - cost(pinyin)

This means the cost of a segmentation S is the sum of
all the scores of the sub-words, sw. This is the cost we
try to minimize over all possible segmentations. The
key equation for deriving the optimal segmentation
is thus:

argmin
ses

min edit_distance(sw,p) - cost(p)
oS pEpinyin

To extract the pinyin from the optimal segmenta-
tion, we just use the ones that were found when we
were performing the search. Note that the edit dis-
tance here is not edit_distance,,,. This is because
we are finding the number of insertion, deletions, etc.
between characters in two different writing systems,
not between two pinyin strings.

Here, edit distance is defined similarly to how we
defined it above. Because we are more likely to need
to make some additions or deletions rather than
substitutions, we assign lower costs to strings that
start out more similar to one another by subtracting
the total number of characters the two strings have
in common from their final edit distance.

That said, it is not ideal to use the edit distance
between these two languages. A simple reason why
not might be as simple as looking at how the ‘Ju’
in ‘Julia’ is transliterated as zhu. The edit distance
here is two characters, one for the substitution of the
‘z’ for the ‘j” and the other for the insertion of the ‘h’.
This is despite the fact that zh and ‘j’ sound almost
identical in Chinese and English (respectively). In the

next section, we describe an approach we use to try
to mitigate these phonemic discrepancies.

B. Improved Edit Distance with Phoneme Consider-
ations

As previously mentioned, the written edit dis-
tance does not perfectly capture the phonetic dif-
ferences and similarities between the two languages.
To address this issue, we implement a pre-processing
function to adjust the English name strings before
passing them to the dynamic programming search
algorithm. This function uses preset rules to per-
form phoneme conversions on the English strings
to convert common convention-equivalent phonemes
to the appropriate Chinese pinyin characters. For
example, one rule encodes converting all instances
of ‘ia’ in the English string to ‘iya’ in the phoneme-
adjusted English string. Other rules include replacing
double-letters with single instances (e.g. ‘tt’ to ‘t’,
‘A’ to ‘1), replacing ‘v’ with ‘I, replacing ‘ph’ with
‘7, replacing ‘th’ with ‘x’, and replacing ‘v’ with
‘w’. This helped significantly decrease the average
edit_distance,,,, as seen in Table @ The predicted
pinyin transliterations had an average edit distance
of 3.4538, and an average edit distance of 3.4718 for
just the names that differed from the targets. 4.50%
of the predicted pinyin matched the target exactly.

C. Improved FEdit Distance with Syllable Number
Heuristic

One category of error we noticed in our translitera-
tions was the selection of lowest-cost names that had
too few or too many syllables, even though there were
names that were much closer to the correct length
and had only a slightly higher total cost. We saw
this as a flaw in the calculation of the total cost of
a full pinyin transliteration. Thus, to improve the
cost metric, we introduced another heuristic to factor
into the search algorithm: an estimate of the num-
ber of syllables. This metric produces an estimated
correct number of syllables for the target pinyin
transliteration as a function of the phoneme-adjusted
English string input. We then modified the equation
for deriving the optimal segmentation to include
the difference between the heuristic syl1l_heuristic
and the actual number of syllables in the proposed
pinyin transliteration num_syll (which is the same
as the number of subwords in the segmentation):

min edit_distance(sw,p)-cost(p)
cs pEpinyin
sw

argmin(
ses

+10(syll_heuristic(S) — num_syll(S)))

We approached the implementation of the syllable
length heuristic in two ways: a model-based tech-
nique and a rules-based technique.

1) Model-Based Syllable Heuristic: For the model-
based heuristic, we built a linear regression model
with two independent variables: the length of the
phoneme-adjusted English string, and the number of
consonants in the phoneme-adjusted English string.
The model outputs the predicted number of syllables
in the target pinyin for that English name. The model
achieved a mean squared error of 0.6987 for predict-
ing the target number of syllables. When using the
cost function as defined above in the search model
with the model-based syllable heuristic, the predicted
pinyin transliterations had an average edit distance
of 3.3212, and an average edit distance of 3.4754 for
just the names that differed from the targets. 4.44%
of the predicted pinyin matched the target exactly.

2) Rules-Based Syllable Heuristic: For the rules-
based heuristic, we used a similar syllable segmenta-
tion algorithm based on consonant (C) and vowel (V)
patterns to the one used in the baseline algorithm.
The possible syllable patterns are C, V, CV, VC,
CVV, and CVC. See pseudocode in Algorithm m

Because the minimum number of syllables is 2 for
Chinese names, we also impose this restriction on the
heuristic. The mean squared error of the predictions
provided by the rules-based heuristic was 1.0523.
When using the same cost function in the search
model, the predicted pinyin transliterations had an
average edit distance of 3.2609, and an average edit
distance of 3.4147 for just the names that differed
from the targets. 4.50% of the predicted pinyin
matched the target exactly.

Despite the higher mean squared error, the rules-
based syllable heuristic was more successful than
the model-based heuristic overall, likely because the
model-based heuristic overfitted on the small pro-
vided dataset. It also did much better on translit-
erating names with no standard translation, such as
translating ‘Golrokh’ into gud luo ke. We proceeded
to use the rules-based syllable heuristic for the edit
distance-based search problem.

D. Improved Edit Distance Metric with Error Type
Considerations

The final improvement we added for the edit
distance-based search problem involved weighting
different kinds of character differences between the
predicted and target pinyin. The simple edit distance
metric we used did not take into account the types of
characters being substituted, deleted, or added; for
example, having an ‘a’ in place of a ‘t’ was weighted
the same as having an ‘a’ in place of an ‘e’ We

1 for each letter in phoneme-adjusted English do
2 if C then
if next letter is C and CC is not valid
two-consonant syllable (‘th’, ‘sh’, ‘ch’,
‘2h’, ‘kh’) then
4 use C ;
5 num_ syllables += 1 ;
6 else if next letter is C' then
7 if following letter is V and next
following letter is V then
8 Use CVV ;
9 num_ syllables +=1 ;
10 if following letter is V andnext
following letter is C' and not ‘n’ then
11 use CV ;
12 num_ syllables +=1 ;
13 else
14 use VC ;
15 num_ syllables += 1 ;
16 end
17 if V then
18 if last character then
19 use V ;
20 num_ syllables += 1 ;
21 else
22 use VC ;
23 num_ syllables +=1 ;
24 end
25 increment to next unprocessed letter ;
26 end

27 return max(2, num_ syllables) ;
Algorithm 1: Rules-Based Heuristic

noticed that names generally were less accurate when
the target string and predicted string differed in the
character type—in other words, when a vowel was
in the place of a consonant, or when a consonant
was in the place of a vowel. Thus, we modified
our edit distance metric to incorporate this unequal
weight, assigning a higher cost (2) to errors of this
type than the cost for same-type errors (1). With
this additional weighted edit distance metric, the
accuracy of segmentations improved substantially.
The predicted pinyin transliterations had an average
edit distance of 3.2026, and an average edit distance
of 3.3747 for just the names that differed from the
targets. 5.1% of the predicted pinyin matched the
target exactly.

E. Co-occurrence Table

In the above search formulations, we have used
edit distance to decide which pinyin are more likely
to be matched with which English sub-words. This

| zha | I | ya
J 1 1 1
U 1 1 1
L 1 2 2
I 1 2 2
A 1 2 2
JU 1 1 1
UL 1 1 1
LI 1 2 2
IA 1 2 2
TABLE T

EXAMPLE SECTION OF A CO-OCCURRENCE TABLE FOCUSING ON
UNIGRAMS AND BIGRAMS FOR THE NAMES ‘JULIA’ AND ‘LiA’

works well, especially after we adjust for some of
the common sound substitutions that occur during
transliteration. An alternative approach is to use the
data we have to do more than just define a global
cost function. We can define a more fine-grained cost
function based on what pinyin tend to be in transla-
tions of names with certain combinations of letters.
To do this, we construct a table whose columns are
the pinyin in the dataset and whose rows are n-grams
from the names. For instance, given the names ‘Julia’
and ‘Lia’, and looking at just unigrams and bigrams,
we arrive a the example in Tablegm above.

We construct this co-occurrence table for all of the
names including all of the names in our dataset. As in
the other search formulations, when given a name, we
iterate over all possible segmentations of the name.
For each sub-word in a segmentation, we find all
of its n-grams (where n € {1,2,3}, and for each n-
gram, we take the top k pinyin that it co-occurs with.
We use unigrams through trigrams because because
most English syllables are at most three letters and
because using larger n might lead to overfitting. We
found empirically that & = 2 tended to lead to
the best results, capturing the most common pinyin
without including too much background noise.

Next, with our list of tuples consisting of the n-
grams and associated top k pinyin with their counts,
we computed a score for each pinyin. First, we
normalized the counts by the number of times the
pinyin appeared in the dataset (akin to the cost
function). This was so that common pinyin did not
dominate in transliterations of English names where
an uncommon pinyin just happened to co-occur with
a more common one. Additionally, because there are
only 26 English unigrams compared to 676 possible
bigrams and 17,576 possible trigrams, we expected
unigram co-occurrence counts to consist principally
of the most common pinyin. This turned out to be
the case in general—unigrams, particularly vowels
and uncommon consonants, tended to just reflect

background noise. Bigrams and trigrams give a little
more fine grained control, so we up-weighted the
counts of them by a factor of 26 (because bigrams are
approximately 26 more times less likely to occur than
a particular unigram). For consistency, we should
have up-weighted trigrams by another factor of 26,
but because of the size of our dataset, doing so gave
trigrams too much weight in deciding the resulting
pinyin. Finally, to further reduce the influence of
background noise, we made one more adjustment
to the pinyin counts to consider the actual sounds
it contains. We counted up how many times each
individual initial or final appeared in the pinyin and
increased the counts of the common ones. For exam-
ple, if the candidate pinyin were bén, ba, and si,
the bén, ba would both have their counts increased
because they share the common initial b while s1
would not. This count is then the final score for the
pinyin, and the pinyin with the highest score is the
predicted pinyin for that sub-word.

To summarize, obtaining the pinyin and score for
a sub-word consists of:

1) Finding all n-grams of the sub-word
2) Getting candidate pinyin by looking at the
most common co-occurring pinyin from co-
occurrence table
3) For each pinyin:
a) Normalize by frequency of pinyin
b) Normalize by length of the n-grams
¢) adjust score based on common characters
with other candidate pinyin

We then sum up the score of each sub-word to
arrive at a score for the segmentation. The segmen-
tation with the highest score is the result, and the
pinyin associated with the scores of the sub-words in
that segmentation are the pinyin that are returned.

We take a few additional steps to ensure that
correct segmentation is found.

1) English names that start or end with vowels
often have different pinyin to account for those
vowels than names that have the same vowels
in the middle. For example, the transliteration
of the name ‘Aaron’ starts with a, but the name
‘Baron’ starts with ba. To account for this,
we introduce a start and end token to names
that start or end with a vowel, respectively.
Bigrams with these tokens co-occur with par-
ticular pinyin in the dataset and these pinyin
are potentially more representative candidates.

2) To prevent long segmentations from accumulat-
ing score that are too large, we use a heuris-
tic to limit the maximum length of the seg-
mentation. The heuristic involves calculating

where hyphens could appear in the names,
the number of syllables, if the name is in the
CMU phonetic dictionary, and the number of
consonant clusters [{7], [§].

3) For certain transliterations, some pinyin de-
pend on sounds that are outside their segmenta-
tion, or in other words, some English sounds are
represented in multiple pinyin. For example,
in ‘Julia’; the ‘i’ influences both the pinyin Ii
and ya, but no segmentation would capture
this—they would either be {L1, A } or {L,
1A }. To address this issue, when double vow-
els or consonants arise in names, we consider
segmentations with the the letters completely
separated, and with both on each side, and
one on the other. For example, with ‘Julia’, we
consider { LI, A }, { LI, 1A }, and {LIA, A }.

F. Results

For each of these trials, we found the predicted
translations of all 1510 names in our dataset. In table

we summarize the results from these trials. We
present the average edit_distance,,;,, as well as
the percentage of names that were predicted exactly
correctly. There are two ways to calculate the average
edit_distance,,,. The first is to compute it over all
the names. However, this deflates the metric a little
bit, because it also takes into account names that we
predicted correctly (which have an edit distance of 0).
Instead, we compute the average edit_distance,,,
over all names we classify incorrectly, as well as the
percentage of names we do classify correctly. That
gives us a sense of how accurate our predictions are
and how wrong they are when they are incorrect.

Unfortunately, our original search formulation,
which takes into account the edit distance between
the English subwords and the pinyin, does much
worse than our baseline. We take a closer look at
some example names to try to understand why:

Benjamin — bén jia min

This is in comparison to the ground truth translit-
eration:

Benjamin — bén jié ming

Here, we can see that the name ‘Benjamin’ gives
the pinyin bén, jia, and min, which is actually
relatively close to the actual transliteration.

However, running this algorithm with the name
‘Julia’ gives the following result:

Julia — bu lian

Approach ‘ Avg edit_distancep;, ‘ % correct
Baseline 3.65 4.70
ED 4.36 1.40
ED + Phoneme 3.45 4.50
ED + SC 3.47 4.44
ED + SH 3.41 4.50
Co-occurrence 3.55 8.30
TABLE 11T

THE RESULTS FROM THE SEARCH-BASED APPROACHES WITH
AVG EDIT DISTANCE FOR NAMES THAT DIFFERED FROM GROUND
TRUTH PINYIN. ED 1S EDIT DISTANCE. SC INCORPORATES THE

MODEL-BASED COST FOR STRAYING FAR FROM THE SYLLABLE

LENGTH HEURISTIC RESULTS. SH USES THE RULES-BASED
SYLLABLE LENGTH HEURISTIC.

Approach | Benjamin | Julia

Baseline ban jia ming zhua li a
ED bén jia min bu lian
ED + Phoneme bén jia min zhu i ya
ED + SC bén jia min zhu 1i ya
ED + SH bén jia min zhu 1i ya
Co-ocurrence ban jié ming | zhu li ya

TABLE IIT
EXAMPLE TRANSLATIONS FOR BENJAMIN AND JULIA USING
VARIOUS SEARCH METHODS

As compared to the ground truth transliteration:
Julia — zhu 1i ya

The pinyin bu, lidn is incorrect both in the num-
ber of syllables (there should be three) and in the
sounds that they make (bu and ju are not very
related). Part of the problem likely relates to the fact
that there is no pinyin sequence ju of any kind in our
dataset.

For the translations of these names from all the
search techniques we used, see table .

IV. DEEP LEARNING
A. Seq2Seq

Next, we take a deep learning approach to solve
the problem of transliterating English names into
Chinese. As deep learning itself is not really the
focus of the class, we treat this approach similarly
to a classification problem. Because we are training
a model and then evaluating it, we split the dataset
of 1510 names into a training set of 1410 names and
a test set of 100 names. We use a modified version of
the machine translation tutorial code available on the
Pytorch website. Here, we use an encoder-decoder
model. First, we calculate an embedding of each
character in the name and then use a gated recurrent
unit (GRU) layer to learn sequential relationships
between characters and produce a final encoding.
The GRU output consists of a character encoding
and a hidden state representing the “context” of the

name. Then, to train the decoder, we calculate an
embedding for each character and use the hidden
state we calculate in the encoder stage. We run the
embedding through another GRU layer and then put
the output through a linear layer to act as a classifier
for what the next character of the pinyin translation
should be (See figure m) Our input layer is the size of
the number of English characters we have; the output
layer is of the number of pinyin characters we have;
and the hidden layers are of size 20 for the character
decoding and 28 for the syllable decoding. The reason
we use such a small embedding size and have single
layer networks is because we do not have a lot of
data.

Because this is a learning task, we need a loss
function to calculate our error and backpropagate
it through the network to update the network pa-
rameters. We decided to use the cross-entropy loss
function for this task. This is because it allows us to
have a probability calculated for each next possible
pinyin character, and we want to change the weights
in the network such that the probability for a given
pinyin character is higher for the correct one. We
propagate the loss back through the network using
stochastic gradient descent with a learning rate of
0.01.

A potential problem with this method is that, be-
cause it is operating on characters rather than entire
pinyin syllables, it could output character sequences
that do not correspond to valid pinyin. To deal with
this problem, we also create a model where, instead of
finding embeddings for characters, we embed entire
syllables. Practically, this is not a huge change. The
inputs for our network are still the same. The output
dimension is now the number of pinyin syllables we
have, and the inputs to the decoder during training
are full pinyin rather than individual characters.

B. Search + Deep Learning

The final approach we try is augmenting our search
results with deep learning. The idea here is that
search gets us pretty far along, so we should learn the
corrections that would turn our search predictions
into the true pinyin. To do this, we perform the same
character encoding and syllable encoding tasks as
described above. However, we change the structure of
the prediction task so that the input to the encoder
is the output pinyin of the search model for each
name, and the target output is still the true pinyin.
We try this approach with both character-wise and
syllable-wise prediction, but it did not show better
performance, as we will discuss.

C. Results

The results of the deep learning trials were some-
what disappointing. Because this is basically a classi-
fication problem, we could not run our final trained
model on our entire dataset, so we used the 100
names in our evaluation set. It took approximately
8 minutes to train both networks. We present the
same statistics as in the search section: average
edit_distance,;, of the incorrect translations as
well as the percentage of correctly translated names
in table [V].

We were curious at why these deep learning meth-
ods did so poorly compared to the search ones—they
were not even able to outperform the baseline. We
investigated some of the translations for the names
we focused on in the search section:

Benjamin —> pén méi ér

Julia — jié ér u

We can see that the results here are worse than
the results we found in the search. For ‘Benjamin’,
while /p/ and /b/ do share some similarities, the /j/
sound is completely absent, and there is a seemingly
random ér sound as well. For ‘Julia’, while we do
have the correct number of syllables, in this case,
arguably, the sounds we have are much worse as well.

The kinds of mistakes the network made in this
case were different from the kinds of mistakes that
the search problem made. Because we had embed-
dings for individual characters in the deep learning
case, it was possible that some of the pinyin that were
generated were not actually valid pinyin at all. We
observed this result for many names, including the
transliteration of ‘Julia’ above. The pinyin u does
not exist and would have be preceded by a w for the
pinyin to be valid. Below are a few other names we
found this problem with:

Henry — han nn

James — jiéll s nn

Another interesting mistake that this network
makes is the use of spaces. In the character encoding
network, the input pinyin that are being fed in are
space separated, so the network also has the neces-
sary data to learn the correct syllable separations.
In general, this works well, as even when the pinyin
themselves are incorrect, they are not separated
by unnecessary spaces. Additionally, the generated
spaces usually do not separate portions of pinyin that
would be pinyin if there was not a space between
them. Of course, there are some counterexamples to
these trends as well, such as the output for ‘Claudia’,

Approach ‘ Avg edit_distancey;, ‘ % correct

Baseline 3.65 4.7

DL Char 4.06 3

DL Syll 4.08 7

Search + DL Char 4.59 0

Search + DL Syll 5.37 0
TABLE IV

SUMMARY OF RESULTS FOR DEEP LEARNING APPROACHES.
CHAR AND SYLL STAND FOR CHARACTER-WISE AND
SYLLABLE-WISE PREDICTION, RESPECTIVELY.

which produced two spaces between the last two
pinyin syllables.

Claudia — ke 1i ke

Many of these problems were solved in the deep
learning with syllable embeddings approach. Because
we were not generating characters one at a time, all
outputs had to be valid pinyin. Because of this, we
did not have any problems with spaces either. Here
are some of the results:

Benjamin — bén jié
Julia — zhu 1i ya
Claudia — ke ke Ii s1

While some of these names look like they were trans-
lated well, particularly ‘Julia’, it is possible that the
network was overfitting and that they appeared in
the training set. Additionally, the name ‘Claudia’ is
not well-transliterated, and these doubled syllables
like ké ké show up somewhat frequently in mistrans-
lations.

V. DISCUSSION

The results we obtained show an interesting pat-
tern that is contrary to much of the NLP literature
of the day.

Translating English names (or name written in
Latin characters roughly following English phonetic
rules) into Chinese is a difficult task. Though we
were able to outperform our baseline using search
techniques, we did not come close to the performance
of our oracles. On average, our best performing algo-
rithm still required more than 3 insertions, deletions
and/or substitutions to arrive at the correct name.
We now investigate why this is the case.

A. Task Difficulties

There are many difficulties involved with perform-
ing this transliteration. First of all, there are some
English letters that can be transliterated by multiple
pinyin. For instance, the ‘j’ in ‘Julia’ corresponds

to zh, but in ‘Benjamin’ it corresponds to j. Anal-
ogously, a single pinyin can corespond to multiple
English letters. x is the transliteration for both the
‘¢’ and ‘th’ in ‘Cynthia’ Not only that, but while
some pinyin characters closely correspond to English
ones (such as ‘p’ and p), many others do not (like
‘ and zh). This is likely the most significant rea-
son the original edit distance search performed so
poorly. It encoded the flawed assumption that names
in English and pinyin that look the same sound
the same as well. The changes that were made to
the edit distance search to replace common English
characters associated with lexicographically different
but phonetically similar pinyin helped to improve the
performance of search, as did considering consonants
that were in the same sound families as more likely
candidates. The co-occurrence table search took a
different approach—instead of hard-coding common
English-to-pinyin substitutions, it tried to derive
them from the data. This would probably have been
more successful if there had been more data (see
below: @)

Finding the best way to segment English names to
assign pinyin to each segment was also a formidable
challenge. Ideally, each pinyin is associated with an
English syllable, but as described earlier, this is not
the case. There are many instances of consonants in
consonant clusters being assigned their own pinyin
(such as the ‘br’ in ‘Bruce’, transliterated as bu 1a),
as well as single letters like ‘x’ sometimes being associ-
ated with the two pinyin ke and si, or the ‘i’ in ‘Julia’
factoring into the transliterations li and the ya. If we
can determine the number of pinyin a transliteration
ought to have, we can more easily assign pinyin to
match segmentations of those lengths while pruning
out all the ones that are too short or long. This is the
motivation for including syllable-counting heuristics
into the search algorithms, and they do help these
algorithms avoid segmentations with drastically dif-
ferent numbers of pinyin than are correct. For the
co-occurrence table search, where we are trying to
maximize the score, there is a pressure to increase the
size of the segmentation. Each additional sub-word
corresponds to a pinyin that contributes to the total
score of the segmentation. Adding in a constraint or
penalty to avoid exceeding the maximum expected
number of syllables helps keep the translations from
being too long.

The deep learning, encoder-decoder models took
an even more relaxed approach and did not start with
any initial assumptions about the segmentation of
the names. They just attempted to find structure,
wherever it might be. Unfortunately, the lack of a
large dataset made this difficult to accomplish.

B. Data Difficulties

A major difficulty with this task is the relative
lack of data. Even though English and Chinese are
both high-resource languages, the number of com-
mon names with standard translations is necessarily
small. There are approximately 1200 possible pinyin
combinations, including tones, so our dataset of 1510
names could not possibly reliably determine what the
English equivalents are in every case (even when tak-
ing into account that each name consists of multiple
pinyin). This means that the syllable cost function
we used in the search problems might have placed
too hard a penalty on somewhat common pinyin that
just did not have a strong presence in our dataset.
Additionally, this means that normalizing by the
frequency of the pinyin in the dataset, like we did
in the co-occurrence table search, may have actually
increased the probability of rare pinyin more than
necessary (See figure).

The limited size of our dataset also might provide
some insight on the differences between the various
search results, particularly the discrepancy between
the edit distance with phoneme-adjustment and the
co-occurrence table methods. The edit distance based
search with phoneme-adjustment achieved a better
average edit_distancep,, for incorrect translations
than the co-occurrence table, but the co-occurrence
table actually translated more of the names correctly.
This may be an artifact of some kind of overfit-
ting. As mentioned in the methodology section, the
number of possible English bigrams and trigrams is
more than the number of pinyin in our dataset, so
it is possible that the few instances of uncommon
bigrams are making the translation of words with
these bigrams too easy while not generalizing well
enough to the rest of the names.

The biggest place where this lack of data poses a
problem, however, is in the deep learning approaches.
We do not really have enough data to generalize
translation patterns, so the models are either going to
overfit or produce meaningless results. It is a little dif-
ficult to investigate overfitting in this case. Normally,
we would just compare our training error to our
evaluation error, but in this case we are training and
evaluating on two different (hopefully related) met-
rics. We are training with the differentiable softmax
function and evaluating with our edit_distance,,,.
That said, we can calculate what our loss would be.
For the seq2seq model with syllables, our final loss on
our training set is approximately 1.3, but the average
loss on our evaluation set is 10.5. Similarly, for the
character based model, the final training loss is about
1.5, but the average loss on the evaluation set is
19.2 (See figure E This means that we are definitely

REFERENCES

overfitting, which is corroborated by the almost per-
fect reproduction of the name ‘Julia’ while other
names like ‘Claudia’ seem to be translated poorly.
This overfitting is likely why the search methods
were superior to the deep learning ones - they took
advantage of the structure that we explicitly encoded
in the problem—structure that would be found by
the recurrent neural net if there was more data.

Even though there are not many more names we
could use to train, there are other English loan-
words in Chinese, which are words from non-Chinese
languages that are transliterated and adopted into
Chinese vocabulary. Examples include yoga (y jia),
bikini (bi jT ni) and copy (kdo béi). These could
provide some more training data, but they tend to
use different sets of characters that have different
meanings than characters used for names. This might
skew the transliterations a little, but may be a
partially viable solution.

C. Metric Difficulties

It is also possible that the metric we were scoring
with, the edit_distance,;,, was not fine-grained
enough to capture our progress. In other words, there
may have been positive things that our approaches
were succeeding at that we missed. One potential
issue is that this edit distance formulation does not
take into account how similar two characters sound.
For instance, it would penalize a b substituted for a
p the same as a f substituted for a p even though
b and p sound more similar (and would therefore
be “more correct”) than f and p. Another factor
that the metric does not control for is name length.
This might not be a significant problem, as names
are generally around the same number of characters,
but it would still be interesting to see what the per-
character edit distance would be.

VI. FUTURE WORK

With regard to the search problem, we hope to take
into account more features in the edit distance and
unigram cost functions. First, we hope to construct
family clusters of phonemes that sound similar and
correspond between English and Chinese (either by
hand, as in Htun et al. [§] and Fung et al. [10],
or via another learning or clustering technique, as
in Li et al. [11]). For example, {zh,z,j} may be
a phoneme cluster in Chinese, while the similar-
sounding phonemes {j, z,¢} might be a cluster in
English. Between the two languages, we can link
these phonemes together as phonemes that sound
similar. Using these phoneme clusters, we can then
derive a metric for the phonetic distance between two

10

given phonemes, where one is in Chinese and one is
in English. We can incorporate this metric into our
edit distance calculation so that the edit distance
between z and ‘c’ may be considered smaller than
that between z and ‘p’, for instance. This would likely
improve the cost function for conversion of English
syllables to Chinese.

Second, we also hope to implement a phoneme
alignment algorithm, in the spirit of that in Fung et
al. [10], whereby the English and proposed Chinese
names are broken up into respective phonemes that
align, or correspond to one another with respect to
the transliteration. For example, the transliteration
Julia — zhu 1i ya would have the alignment:

J 1 a
Zh 1 ya

Once this alignment is implemented, we can then
use it in tandem with the phoneme family clusters
to calculate a more accurate edit distance between
English and Chinese representations. We can also
use the segmentations of the alignments to better
determine segmentations for which to calculate co-
occurrences in the n-grams-based approach.

Third, we hope to take some inspiration from the
bootstrapping for low-resource languages technique
M] to be able to perform transliteration. Despite
neither English nor Chinese being a low-resource
language, common names as a sub-category are rela-
tively limited in number, and we could benefit from
applying the techniques they discuss in their work.

i
i

u
u

VII. CONCLUSION

In this project, we investigated the challenge of
finding Chinese transliterations of English names.
While we were able to perform better than our
baseline, which involved a dictionary look-up with
some segmentation rules, we were not able to achieve
human-level performance. We approached this task
with both search and deep-learning based methods
and found that, likely due to our limited dataset,
search performed better. Transliteration of names is
a difficult problem, and one that is not frequently
studied as much as other NLP tasks. We hope this
work provides a good starting point for future work
in this area.

REFERENCES

[1] K. Kaur and P. Singh, “Review of machine
transliteration techniques,” International Jour-
nal of Computer Applications, vol. 107, no. 20,
2014.

[2] S. Wan and C. M. Verspoor, “Automatic
english-chinese name transliteration for devel-
opment of multilingual resources,” in Pro-
ceedings of the 17th international conference
on Computational linguistics-Volume 2, Asso-
ciation for Computational Linguistics, 1998,
pp. 1352-1356.

8] Y. Shao, J. Tiedemann, and J. Nivre,
“Boosting english-chinese machine translitera-
tion via high quality alignment and multilin-
gual resources,” in Proceedings of the Fifth
Named Entity Workshop, 2015, pp. 56-60.

[4] S. Upadhyay, J. Kodner, and D. Roth,
“Bootstrapping transliteration with
constrained discovery for low-resource

languages,” arXiv preprint arXiv:1809.07807,
2018.

[5] L. Mack, Ever wonder what your name trans-
lates to in chinese? https://www.thoughtco.
com / chinese - and - english - names - 688196,
Accessed: 2018-12-09.

[6] GLOSBE Partners, Transliteration and roman-
ization utilities, https://glosbe.com/, 2017.

[7] K. Lenzo, Cmu pronounciation dictionary,
http: / / www .speech . cs.cmu.edu / cgi- bin /
cmudict, 2015.

[8] Kozea Community, Pyphen, http://pyphen.
org, 2018.

[9] O. Htun, S. Kodama, and Y. Mikami, “Cross-

language phonetic similarity measure on terms

appeared in asian languages,” International

Journal of Intelligent Information Processing,

vol. Volume 2, p. 9 21, Jun. 2011. por: 10.4156/

ijiip.vol2.issue2.2.

P. Fung, W. Byrne, F. Zheng, T. Kamm,

Y. Liu, Z. Song, V. Venkataramani, and

U. Ruhi, “Pronunciation modeling of man-

darin casual speech,” Johns Hopkins Uni-

versity, 2000, pp. 1-45. [Online]. Available:
https : / / pdfs . semanticscholar . org / 4a52 /
fc064e45b5b3b4df535c9c13ee88b843e3d1.pdf.

M. Li, M. Danilevsky, S. Noeman, and Y.

Li, “Dimsim: An accurate chinese phonetic

similarity algorithm based on learned high

dimensional encoding,” in Proceedings of the
22nd Conference on Computational Natural

Language Learning, Brussels, Belgium: Asso-

ciation for Computational Linguistics, 2018,

pp. 444-453. [Online]. Available: http://aclweb.

org/anthology /K18-1043.

[10]

APPENDIX

List of names presented to baseline and oracle:
Golrokh, Anastasia, Benjamin, Krystal, Alice, Gre-

11

ses, Krishna, Jake, Siena, Mateo, Yatharth, Aiden,
Jocelyn, Mehran, Jenny, Olen, Thariq, Timothy,
Julia, Abhishek, Mary, Sanja, Irvin, Carly, Valerio,
Kenneth, Marty, Judith, Murali, Robert

‘English Name‘ ‘ Pinyin Translation ‘

[T N R

-0 = B-0-0
ir;%‘i;‘f{ﬂ 11

| Predicted Name ‘

N J N

Y Y
Encoder Decoder
(GRU) (GRU)

Fig. 1. Illustration of our encoder-decoder framework

34 38
32 36
30
28 30
26 28
24 3e
22 22
20 20
18 s
16 14
14

0 100 20 ;0 40 0 w0 70 0 10 220 300 40 o &0 70

Fig. 2. On the left we have the loss curves from the character

embedding seq2seq model and on the right we have the syllable
embedding one. Graphs of Loss versus Training Iteration

Distribution of Pinyin Frequencies for bigram 'BR'

NN
S O

Weighted Frequency
-
o w 5 &
bo [l
la
bu
Ii [
de
lan [
Toi I
dill
dan il
jeng Il

50.030
§0.025
$0.020
£
$0.015
2
£0.010
3
£0.005
0.000

Fig. 3. Distribution over (toneless) pinyin frequencies asso-
ciated with bigram ‘br’ unnormalized on top and normalized
by pinyin frequency on bottom. Notice how the relatively
uncommon pinyin xin’s mass increases dramatically with nor-
malization.

https://www.thoughtco.com/chinese-and-english-names-688196
https://www.thoughtco.com/chinese-and-english-names-688196
https://glosbe.com/
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://pyphen.org
http://pyphen.org
https://doi.org/10.4156/ijiip.vol2.issue2.2
https://doi.org/10.4156/ijiip.vol2.issue2.2
https://pdfs.semanticscholar.org/4a52/fc064e45b5b3b4df535c9c13ee88b843e3d1.pdf
https://pdfs.semanticscholar.org/4a52/fc064e45b5b3b4df535c9c13ee88b843e3d1.pdf
http://aclweb.org/anthology/K18-1043
http://aclweb.org/anthology/K18-1043

	Introduction
	Methodology
	Data
	Metric
	Baseline and Oracle
	Baseline
	Oracle

	Search Model
	Edit Distance Search
	Improved Edit Distance with Phoneme Considerations
	Improved Edit Distance with Syllable Number Heuristic
	Model-Based Syllable Heuristic
	Rules-Based Syllable Heuristic

	Improved Edit Distance Metric with Error Type Considerations
	Co-occurrence Table
	Results

	Deep Learning
	Seq2Seq
	Search + Deep Learning
	Results

	Discussion
	Task Difficulties
	Data Difficulties
	Metric Difficulties

	Future Work
	Conclusion

