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Abstract

In this paper, we present a conditional GAN image trans-
lation model for generating realistic human portraits from
artist sketches. We modify the existing pix2pix model by
introducing four variations of an iterative refinement (IR)
model architecture with two generators and one discrimi-
nator, as well as a model that incorporates spectral normal-
ization and self-attention into pix2pix. We utilize the CUHK
Sketch Database and CUHK ColorFERET Database for
training and evaluation. The best-performing model, both
qualitatively and quantitatively, uses iterative refinement
with L1 and cGAN loss on the first generator and L1 loss
on the second generator, likely due to the first-stage sharp
image synthesis and second-stage image smoothing. Most
failure modes are reasonable and can be attributed to the
small dataset size, among other factors. Future steps in-
clude masking input images to facial regions, jointly train-
ing a superresolution model, and learning a weighted aver-
age of the generator outputs.

1. Introduction

Generation of photorealistic images from sketches of hu-
man faces has many creative, commercial, and forensic ap-
plications. On the creative side, it may help artists turn
sketches into photorealistic content. Commercially, it may
generate viable alternatives to purchased stock photos for
advertisements. Finally, generation of photorealistic color
images from forensic sketches of perpetrators may make it
easier for witnesses to confirm or deny likeness matches.
This precision during a photo lineup could result in fewer
innocent people being detained as suspects on the basis of
the forensic sketch.

In this project, we tackle the problem of generating color
photorealistic images of human faces from corresponding
grayscale hand-drawn sketches. The input to our algorithm
is an image of a sketch, and we use an iteratively refined

conditional GAN to generate an image of the face the sketch
represents.

We aggregate and align datasets (CUHK Sketch
Database [12] and CUHK ColorFERET [15]) of facial
sketches and corresponding facial photos for training and
evaluation. For our baseline, we fine-tune a pretrained con-
ditional GAN, pix2pix, on our training set and evaluate it on
the test set. To improve on it, we primarily investigate vari-
ations of iterative refinement (IR), in which the generator
becomes a sequence of two generators, each with its own
loss. We also evaluate the success of incorporating spectral
normalization [7] and self-attention [14] into the generator
and discriminator.

During training, all the models for this task utilize a
sketch-photo pair as input, or the tuple (xs, xp) where xs is
the grayscale sketch image and xp is the color ground-truth
photo, and output a generated color photo xg conditioned
on xs. Input images have 3 RGB channels and are resized
and cropped to be 256 × 256 pixels, and output images are
the same dimensions. At test time, the model only receives
a sketch, and the generated image is evaluated against the
corresponding ground truth photo.

2. Related Work

Wang and Tang [11] introduce the task of synthesizing
face photos from face sketches from the CUHK Sketch
Databse. They demonstrate that remarkably convincing
face photos can be synthesized from the sketches using mul-
tiscale Markov Random Fields [12].

More recently, Kazemi et al. [6] tackle the unpaired fa-
cial sketch to image problem with GANs. They use a vari-
ant of Zhu et al’s CycleGAN [16], a well-known image-
to-image translation baseline model that uses unpaired im-
ages. They modify CycleGAN by adding a facial geometry
discriminator network, replacing the spatially local Patch-
GAN used in CycleGAN (and pix2pix [5]) to encourage the
network’s discriminator to learn higher-level facial features,
and thereby enforce global consistency across the generated
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image. They also replace cycle consistency loss with per-
ceptual loss, which improves performance. Wang et al. [13]
also use a similar facial feature loss in the related facial ag-
ing GAN problem to enforce higher-level consistency of the
subject’s identity from the input to generated image.

On the paired image translation side, Chen and Hays
[2] tackle the more general sketch-to-image problem using
the Sketchy database for sketch generation in 125 differ-
ent image categories. They use a conditional GAN that
uses Masked Residual Units (MRUs), designed to allow
each layer of the network to decide which portions of the
feature map from the previous layer to use in its computa-
tion. They use both GAN and classification losses. Overall,
their findings are that images cannot always be simultane-
ously photorealistic and faithful to the original sketch, and
though their network is diverse, it does not produce realistic
images. The failure modes often show over-faithful gener-
ated images that closely follow poorly drawn sketch bound-
aries, which could be attributed to a lack of generalization
to canonical features of the desired class because the net-
work has not learned global characteristics of the classes.
This is particularly devastating for generating images from
facial sketches due to the artistic liberties that sketch artists
may take when drawing and image of a person, especially
if recalled from memory.

Isola et al. [5] present the pix2pix model, a conditional
GAN for general image-to-image translation. One of their
applications is the “sketch to shoe” task, which colors in
a plausible image given a sketch for a shoe. Their con-
ditional GAN uses a U-Net [9] encoder-decoder structure
with skip connections between encoder and decoder layers
of the same feature map dimension, and uses PatchGAN
for the discriminator, which enforces local consistency in
regions of a certain patch size in the output image.

Like Chen and Hays [2] and Isola et al. [5], we choose
to pursue the paired image translation method for this task:
first, because we have access to aligned sketch-photo pairs,
and second, because we see some potential areas of im-
provement upon the existing paired translation models with
regard to global facial feature consistency, especially for the
pix2pix framework on our domain-specific (facial sketch to
photo) problem.

We also see potential for improvement using techniques
from the following three task-independent GAN papers.
Zhang et al. [14] use self-attention layers in their GANs and
find that they enable the model to use cues from all feature
locations, not just local ones. This idea can potentially con-
tribute model expressiveness to our problem space. Hossain
et al. [3] show that the use of a generator followed by a se-
quence of “editors” that iteratively refine the generated sam-
ple can lead to model robustness, which we aim to achieve
in ours. Miyako et al. [7] introduce a normalization tech-
nique called spectral normalization, which they show can

effectively stabilize the training of GAN discriminators.

3. Methods
Generative Adversarial Networks (GANs) are generative

models that learn a mapping from a random noise vector z
to an output image y. In this paper, the model we use is
a conditional GAN, which permits observation of an input
image x in generating the output image. Conditional GANs
therefore learn to map a random noise vector z along with
an input image x to an output image y. The conditional
GAN consists of a generator network G and discriminator
network D. The game-theoretic interpretation of the net-
work formulation is that G tries to generate fake images
that are as similar as possible to the real image, y, to fool
D, and D tries to be accurate in distinguishing real images
from generated images and outputs a likelihood score of the
image being real that lies between 0 and 1.

3.1. Baseline Model: Conditional GAN

3.1.1 Objective

The standard conditional GAN objective that the generator
minimizes and the discriminator maximizes is

LcGAN (G,D) = Ex,y[logD(x, y)]+

Ex,z[log(1−D(x,G(x, z))]. (1)

The term Ex,y[logD(x, y)] denotes the discriminator’s loss
from predicting whether the real image is real or fake, while
the second term denotes the discriminator’s loss from pre-
dicting whether a generated image G(x, z) is real or fake.
Since the discriminator hopes to achieve as low loss as pos-
sible in classifying the real and fake images, the generator
in turn maximizes this loss. Therefore, the optimal genera-
tor model can be formulated as the optimal solution to the
minimax problem G∗ = argminG maxD LcGAN (G,D).

The conditional GAN also utilizes another loss that takes
advantage of the paired dataset to boost the accuracy of the
images generated. As noted by [5], L1 distance is favor-
able to L2 distance since it discourages blurring. The L1
distance loss for target y and generated image G(x, z) is

LL1(G) = Ex,y,z[||y −G(x, z)||1]. (2)

The overall objective for the baseline pix2pix model with
L1 loss weight λ (1 by default, which we use) is therefore

Lbaseline = LcGAN (G,D) + λLL1(G). (3)

3.1.2 Architecture

Our baseline method for this task is a finetuned pre-
trained model implementation from the paired image-to-
image translation conditional GAN model, pix2pix by Isola
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et al. [5] and implemented by Zhu et al. on GitHub. The
generator is a U-Net [9], a convolutional encoder-decoder
model with skip connections between layers of identical
feature map size, trained on 256×256×3 images. The dis-
criminator is a PatchGAN 3-layer classifier introduced by
[5]. The pretrained weights used were from the edges2shoes
version of pix2pix, which was trained on sketch-photo pairs
of colorful shoes. The pretrained model only included gen-
erator weights and not discriminator weights, so the model
was trained for 110 epochs on top of the pretrained genera-
tor weights and discriminator weights using normal initial-
ization until model results began to plateau.

3.2. Conditional GANs with Iterative Refinement

On this particular sketch-to-photo task, the pix2pix
model suffers from deficiencies in global consistency across
the image and lacks smooth and crisp boundary lines for
separating colors from one another on the face. Intuitively,
after the initial output image is produced by the model, an
additional network that learns to modify the image to make
it more realistic would be helpful. To do this, inspired by
the concept of iterative refinement, we implement and test
four modifications of the pix2pix baseline model.

The iterative refinement (IR) architecture builds off of
the conditional GAN framework and uses the same discrim-
inator model as the baseline; however, it instead involves
two generator segments that combine to form the generator
network. We use U-Net 256 models for both generators.
The output of the first generator is subject to a set of losses
conditioned on the target image, and its output is fed to the
second generator, which then also generates an image sub-
ject to another set of losses conditioned on the target image.
The hope is for the network to learn to use the second gen-
erator to fine-tune the image obtained from the first.

To train this model, we perform transfer learning on top
of the baseline’s weights for 200 epochs. Specifically, we
initialize bothG1 andG2 to the baselineG weights, and the
baseline D weights are used as the initial weights for D.

Both generators of this network can be evaluated with L1
or cGAN losses (or both). We now describe the four vari-
ants of the IR architecture that explore these design options.

3.2.1 IR Model with cGAN-Final Loss

The baseline model’s objective uses two losses: the cGAN
loss and the L1 loss. One important design choice for the
IR model is which losses to impose on the two generators.
We first try imposing both the cGAN loss and L1 loss on the
second generator, but only an L1 loss on the first generator.
Both L1 losses share the same λ parameter. We call this
objective the ‘cGAN-Final’ loss. Thus, the objective for

generators G1 and G2 and discriminator D is

LcGANFinal = LcGAN (G2, D)+

λLL1(G1) + λLL1(G2). (4)

This model architecture is illustrated in Figure 1. Concep-
tually, the idea is to let the model decide what to do with the
first generator aside from generating images similar to the
ground truth, while the final result needs to ‘pass the test’
of the discriminator.

3.2.2 IR Model and cGAN-Initial Loss

The cGAN-Initial Loss model has the same architecture and
L1 loss as that of the cGAN-Final Loss model; however,
the first generator receives the cGAN Loss rather than the
second generator. Concretely, its objective is

LcGANFinal = LcGAN (G1, D)+

λLL1
(G1) + λLL1

(G2). (5)

3.2.3 IR Model and cGAN-Both Loss

The cGAN-Both Loss model places cGAN and L1 losses
on both generators, yielding an objective of

LcGANFinal = LcGAN (G1, D)+

LcGAN (G2, D)+

λLL1
(G1) + λLL1

(G2). (6)

3.2.4 IR Model with cGAN-Final Loss and Grayscale

The previous three IR models allow the network to decide
what to learn in the first generator and what refinements to
make in the second. However, it is also worth exploring
explicitly designed tasks for each generator. Thus, we also
create an IR network whose first generator’s target image,
instead of being the same as that of the second generator, is
the grayscale version of the color target. We thus force the
first generator to map sketches to grayscale images, which
might be an easier task for the network than translating to
a color image. The second generator then colorizes and re-
fines the grayscale output of the first generator. Only the
cGAN-Final Loss was tried for this model in the interest
of having one discriminator model that discriminates over
color images only. The overall objective is the same as (4).

3.3. Spectral Normalization and Self-Attention

Our last model incorporates two additional techniques:
spectral normalization and self-attention. Both require
changes to the network that necessitate training the mod-
els from scratch, due to the way the pretrained edges2shoes
model was constructed. We train this model for 110 epochs.
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Figure 1. Architecture of iterative refinement model with color images and first loss variant: cGAN-Final Loss. D learns to distinguish
between generated and real images, while G1 and G2 jointly learn to generate realistic photos from input x.

As defined by Miyako et al. [7], spectral normalization
is the process of dividing weight matrices by their largest
singular value, in order to make that largest singular value
equal 1. This process is tied to what is known as the “Lip-
schitz constant” of the function, and fixing the constant at
1 bounds the gradients in the discriminator and the genera-
tor [7]. We adapt code from this GitHub to add a spectral
normalization layer after each convolution layer in our gen-
erator and discriminator.

We also investigate the effect of adding a self-attention
layer to each generator and discriminator in our IR cGAN,
as Zhang et al. [14] do in SAGAN. Our self-attention layer
applies affine transformations followed by a ReLU nonlin-
earity to the input to produce “query”, “key”, and “value”
tensors. We matrix-multiply the query and key tensors, ap-
ply a softmax to form an attention distribution over the input
features, and matrix-multiply it by the “value” tensor to pro-
duce self-attention feature maps. We use a skip-connection
to carry forward the original features, and we concatenate
these features to the self-attention maps to form the output.

In the “Spectral Normalization and Self-Attention”
model, we incorporate self-attention layers after the third
main convolution layer in the discriminator, and after the
third level deep of recursion in the U-Net of each generator.
We adapt Self-Attention code from the SAGAN GitHub for
these layers, modifying it to work with the nn.Sequential
framework with which the model was set up.

4. Dataset

The dataset we have assembled consists of 1037
sketch-photo pairs that come from two separate datasets:
the CUHK ColorFERET Sketch Database [15] (‘Color-
FERET’, 849 pairs) and the CUHK Face Sketch Database
[12] (‘CUHK’, 188 pairs). While we also completely pre-
processed the IIIT-D Sketch Database [1] (375 pairs), we
did not end up using it in our work because of face align-

Figure 2. Self-attention mechanism as presented in [14]

ment issues that were not resolvable within the project time
frame. Our train-test split is 788 train-249 test, with a 80-
20 split on the ColorFERET dataset and the 88-100 split
that the CUHK dataset already designates. Figure 3 shows
some example images from the dataset. The ColorFERET
database required extensive pre-processing.

We crucially note that these sketch-photo pairs do not use
‘reverse-engineered’ or generated sketches from unpaired
photos; the sketches were drawn manually by sketch artists,
and thus contain a higher degree of natural variation in its
boundary lines and overall shapes. We make this choice
despite the smaller amount of data because we believe it
elevates the problem difficulty, as these are more realistic
representations of human sketches that force the network to
go beyond boundary-matching when filling in the colors of
the grayscale sketch.

4.1. Pre-processing

The ColorFERET database came as a deeply nested set
of folders containing photographs from two DVDs and two
CDs, a corresponding list of photo names that corresponded
to sketches, a folder of sketches, and a separate folder of
fiducial points for image alignment. The folder of each pho-
tographed individual had multiple photographs from vari-
ous angles, and file paths were not consistent between the
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Figure 3. Sample images from dataset, with sketches on first row
and color images on second row. The first two pairs are from
CUHK and last two are from ColorFERET.

list of file names provided by CUHK and the ColorFERET
database (some listed files were also not existent). As a re-
sult, pre-processing to extract the correct images included
writing scripts for 1) extracting the corresponding color im-
age for each sketch image, 2) applying corrections to these
extractions based on an error log file in the dataset, and 3)
mapping the true sketch image names to the true color im-
age names.

We also derived the affine transformation required to
linearly map three fiducial points to three given locations,
wrote a script to do this PIL and cv2, and used the fiducial
points provided with ColorFERET along with the consistent
and discernable fiducial points of CUHK’s cropped images
to align the eyes and mouth of each sketch-photo pair in a
consistent way across the datasets.

To augment the dataset and promote robustness, we take
random crops of the image pairs on each train iteration. The
network input is a resized 256 × 256 × 3 image.

5. Results and Discussion
5.1. Hyperparameter Selection

As our model builds on top of the edges2shoes pix2pix
model, we use the optimal hyperparameters reported by
Isola et al. [5]: learning rate of 0.0002, batch size of 1,
β1 = 0.5 for the Adam optimizer, normal weight initializa-
tion, as well as λ = 1 for the L1 loss weight. Our focus is on
developing the strongest model architectures and objective
functions using these pre-selected optimal parameters.

5.2. Qualitative Results and Analysis

To qualitatively evaluate the model, we present some ex-
ample generated images from running the baseline pix2pix
model and the four iterative refinement models on the with-
held test set (Table 1).

Visually, the baseline model appears to have learned
rough, general facial structure, but not global consistency
across facial features, with inconsistent halves of the face or
miscolored or color-jittered portions of the face that appear
unrealistic. The faces have abrupt and unnatural transitions

and some extraneous artifacts, possessing more artistic than
photorealistic qualities. However, the model has learned
some variation in skin color, as seen across all images, as
well as hair, lip, and cheek color. None of the models appear
to have learned crisp templates for clothing (as is expected).

Some very interesting patterns emerge in the images
from the IR models. First, it appears that all four models
perform qualitatively better than the baseline in producing
more realistic and plausible images that are also closer to
the ground truth image. There are fewer undesired arti-
facts, and the images tend to be more globally consistent
and smoother in terms of facial features, and the image col-
ors have less jitter. They also give a more realistic sense of
the 3D structure of the face. The skin tones are also closer
to those of the ground truth images.

It’s also interesting to note that the model does not sim-
ply learn to correlate common masculine or feminine facial
features with hair length. For example, it produces consis-
tent masculine features on male subjects with long hair and
feminine features for female subjects with short hair. Thus,
there is evidence that the model is truly learning mappings
from features in the sketches to those in the target images.

Among the IR models, the images produced by genera-
tors subject to the cGAN loss tend to have more color jitter
and sharp edges similar to the baseline model, though not
as salient. On the other hand, images produced by gener-
ators subject to only the L1 loss tend to have smoother, a
bit blurrier, yet more even and visually realistic faces. It
appears that in models where only one generator has the
cGAN loss, the generator with only the L1 loss acts as a
sort of ‘smoothing’ filter to the image. The human judg-
ment that these images are more realistic and closer to the
target image likely results from the blurriness, since there
are fewer jarring, unnatural color variations and edges in
the image. Their template-like quality for salient features
of the face makes them more plausible.

Intuitively, the L1 loss is a pixel-level loss, and here, it
appears to act as a smoother that reduces pixel variation,
trading off crisper boundaries for more averaged and ‘safe’
guesses for plausible pixel values. Smudging boundaries
gives the image softer penalties because pixel values do not
have extreme transitions. Smoothing lowers loss, since if a
sharp edge is off by even just a pixel, the model is greatly
penalized. When the cGAN loss is added in addition to the
L1 loss, the cGAN loss dominates and pushes the model to-
ward making crisper boundaries that might have a chance at
fooling the discriminator, since the discriminator can eas-
ily rely on recognizing blurring and soft pixel transitions
to distinguish between real and fake images. An important
parameter that can better balance this tradeoff is the λ in
equations (3, 4, 5, 6), which we did not have time to tune
but would be a good direction to explore.

As for the cGAN-Final Loss model with spectral normal-
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ization and self-attention, images produced by the first gen-
erator are comparable to those of the first generators in other
models; however, the images from the second generator are
significantly more pixellated in some places than the others.
Even the training image outputs have pixellated patches,
which suggests more training time may be needed to fit the
extra parameters added by spectral normalization and self-
attention. Unlike the other models, this model does not have
the starting point of a pretrained model, and it shows: either
the second generator or the discriminator needs more train-
ing to do better. Another possible cause of the pixellation
is extreme gradients, but the spectral normalization makes
this less likely.

Though there was insufficient time to conduct a thorough
user study, some casual surveys of a handful of subjects re-
sulted in the assessment that the cGAN-Initial second gen-
erator (2b) and cGAN-Both first generator (3a) images are
the most realistic and closest to the ground truth image.

5.3. Quantitative Results and Analysis

We choose five evaluation metrics for evaluating model
performance, the values for all of which are arithmetic av-
erages (means) across outputs of the test set: L1 and L2
distance, SSIM (Structural Similarity Index), and FaceNet
[10] Embedding distance.

L1 and L2 distance are standard for pixel-level image
comparison, and SSIM is standard for evaluating structural
similarity in images that evaluates the quality of a processed
image from a true image, which aligns with this task. Fi-
nally, little-seen in the literature is an evaluation metric
based on facial feature embedding distances (though iden-
tity verification rates have been used, as in [6]), which we
introduce here as the comparison of FaceNet embedding
distances using the pretrained FaceNet model from here.

See Table 2 for these values for all models and their
output images. All of the iterative refinement models out-
perform the baseline by a large margin. The output of the
cGAN-Initial model’s generator 2 has the strongest perfor-
mance among the L1 and SSIM metrics, though it is about
average for L2 distance, where the cGAN-Final generator
outputs shine. However, it has a much higher SSIM than
any other model by a significant margin, which shows that
the structural similarity of the faces produced by the cGAN-
Initial generator 2 are closest to those of the target.

However, the story is very different for the FaceNet em-
bedding distance metrics; the best models for the other three
metrics and human evaluation have the worst FaceNet em-
bedding metrics, and the worst models for the other metrics
have the best FaceNet embedding metrics. Seeing as the
other three metrics coincide much more closely with human
evaluation, we are inclined to believe that these particular
FaceNet embeddings don’t necessarily capture well, at least
in this context, the concept of facial ‘realness’ or similarity

that humans perceive. Therefore, overall, the cGAN-Initial
model appears to perform the best out of the four iterative
refinement models, especially with the output of generator
2. We hypothesize that this model works well because im-
posing both the cGAN and L1 losses on the first generator
creates an image with crisp boundaries that can fool the dis-
criminator; however, it exhibits sharp color transitions and
jitter that doesn’t appear natural to the human eye, which
is then smoothed out by the second generator that is only
subject to L1 loss. The cGAN-Both model also has reason-
able results, but the images appear less natural because less
smoothing occurs when both generators use the cGAN loss.

Finally, to highlight some takeaways from the evaluation
metrics, the L1 and L2 distance operate on the pixel level,
which is a good heuristic, but does not necessarily capture
the way humans compare image similarity. On the other
hand, the SSIM and FaceNet metrics explore higher-level
feature comparison. However, despite the fact that SSIM
is not specific to facial features and L1 and L2 distance are
lower-level metrics, these metrics are more consistent with
human evaluation, while the FaceNet embeddings yield re-
sults that are highly inconsistent with human evaluation.
This suggests that there is still room for developing better
evaluation metrics that capture the human-like comparison
of faces on the level of facial features, an exciting direction
for future work.

5.4. Failure Modes and Shortcomings

Table 3 highlights examples of the main types of failure
modes observed in the test set outputs. Starting from the
first row, the main deficiencies across all models with vary-
ing degrees of severity are: failure to reproduce less com-
mon hairstyles that involve asymmetry or obstruction of the
face (1), incomplete or malformed facial contraptions, such
as glasses shown (2), odd or unfaithful coloration of head-
gear such as headbands and hats (3), ‘smoothing away’ of
details such as earrings, inferring drastically incorrect (usu-
ally lighter) skin tone and hair color (4, 5), and unrealistic
residual artifacts on less common facial or cranial shapes
(6). However, we do note that the model does not suffer
from mode collapse (producing low-diversity samples or the
same sample repeatedly given different inputs).

On a high level, the likely reason for most of these fail-
ure modes is the small dataset size. The model successfully
learns the general template for a human face with various
key features, but simply hasn’t seen enough examples of
variations in earrings, glasses, and different hairstyles and
skin tones to be able to faithfully reproduce them from a
detailed sketch. With larger paired datasets with greater di-
versity in the types of detail found in these images, we sus-
pect the model will perform much better.

There are also more nuanced factors that might con-
tribute to these errors. First, some images in the dataset have
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Sketch Truth Baseline 1a 1b 2a 2b 3a 3b 4a 4b 5a 5b

Table 1. Sample ground-truth image pairs and outputs from the test set for baseline model and the four IR models, for which the results are
presented in the order cGAN-Final (1), cGAN-Initial (2), cGAN-Both (3), cGAN-Final with grayscale (4), and cGAN-Final with Spectral
Normalization and Self-Attention (5). ‘a’ refers to the output of the first generator, and ‘b’ to the second.

L1 L2 SSIM FaceNet L1 FaceNet L2
Baseline 35.245 56.928 0.487 43.147 1.999082
cGAN-Final generator 1 32.579 53.332 0.579 43.157 1.999086
cGAN-Final generator 2 33.647 55.367 0.524 43.098 1.999075
cGAN-Initial generator 1 32.523 53.713 0.581 43.171 1.999085
cGAN-Initial generator 2 32.273 53.794 0.608 43.220 1.999104
cGAN-Both generator 1 32.705 53.490 0.564 43.137 1.999084
cGAN-Both generator 2 33.564 55.290 0.529 43.102 1.999073
cGAN-Final gray 33.409 55.135 0.526 43.088 1.999072
cGAN-Final w/ spectral norm & self-attn, gen. 1 33.721 54.595 0.571 43.164 1.999092
cGAN-Final w/ spectral norm & self-attn, gen. 2 34.811 57.038 0.530 43.090 1.999072

Table 2. Average L1 distance, L2 distance, SSIM, and FaceNet [10] embedding L1 and L2 distance metrics across the 294 test set outputs
for all models. Best scores are bolded (SSIM is the only one for which a higher score is better). Note that FaceNet L2 distance has variances
on the order of 1e-9, so more significant digits are displayed.

poor lighting, such as the third subject in Table 3, result-
ing in a darker and flatter perception of the face. Since the
model is trying to learn distinguishing facial features, the
bad lighting reduces some of this structural 3D information.
Thus, the corresponding outputs appear more flat and facial
features sometimes malformed. In addition, as mentioned
previously, the sketches are hand-drawn by artists and not
synthesized; therefore, some sketches are not extremely ac-
curate and faithful to the target image, as in the first subject
in Table 3. This makes it more difficult for the model to
properly learn the mappings from sketch outlines to facial

features, and given this handicap, we believe the model per-
forms reasonably well. Unsurprisingly, the more successful
images in Table 1 tend to have sketch-image pairs that have
highly similar details and relative positioning.

Another concern upon observing the outputs is that the
model clearly learns the background colors of the images,
since the background colors are almost perfectly repro-
duced in Table 1 and often in 3. The background color
reproduction suggests that the model can consistently de-
termine which dataset a given sketch belongs to, and may
even condition the image generation on this knowledge
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Sketch Truth Baseline 1a 1b 2a 2b 3a 3b 4a 4b 5a 5b

Table 3. Sample failure modes with ground-truth image pairs and outputs from the test set for baseline model and the four IR models,
for which the results are presented in the order cGAN-Final (1), cGAN-Initial (2), cGAN-Both (3), cGAN-Final with grayscale (4), and
cGAN-Final with Spectral Normalization and Self-Attention (5). ‘a’ refers to the output of the first generator, and ‘b’ to the second.

since the background colors of the two datasets are so well-
reproduced and so distinct. This potential ‘memorization’
yields some concerns, such as the robustness of the model
in generalizing to sketches of similar quality but drawn by
other artists. The model may operate on a narrow domain in
terms of sketch style since it may have effectively learned a
mapping from artist sketch style to image features. More-
over, the model should not even be penalized for incorrect
background or clothing—only the facial features need to be
learned. Thus, future work might incorporate a masking
technique to only train the model on face pixels.

6. Conclusion and Future Work
In this paper, we present a new conditional GAN image

translation model for the task of generating images of hu-
man faces from artist sketches. We build our work off of the
pix2pix model [5] and the concept of iterative refinement
(IR) and train our models by fine-tuning the edges2shoes
pix2pix model. We present four formulations of the itera-
tive refinement cGAN and also test spectral normalization
and self-attention. The model performing best overall quali-
tatively and quantitatively is the iterative refinement cGAN-
Both model that uses a generator with L1 and cGAN loss
that feeds into a second generator that uses only L1 loss.
We attribute its success to the two-step mechanism of this
model: the output of the first generator has crisp boundaries
and resembles the target in a close but “choppy” fashion,
and the second generator smooths it in a way that makes the
image more plausible.

We see many avenues for future work on this task. First,

gathering more data will likely provide performance boosts.
Including more paired datasets like those used here ([12]
and [15]) and [1] that have greater ethnic diversity and rep-
resentation of varied facial features, hair, and head garments
will result in more detailed and realistic images.

To improve on our current model’s design, the network
inputs can be masked to omit background and clothing pix-
els to only train the model on face pixels. This will prevent
the model from learning arbitrary correlations between fa-
cial features and background color, for example. We’d also
like to try non-RGB color spaces, such as HSL, HSV, and
CMYK, to determine which is most effective for this task.

Since the best performing networks have blurrier output
images, it would be interesting to perform iterative refine-
ment on these smooth output images using a superresolution
model to yield crisp yet realistic images. We also consider
outputting a learned weighted average of the outputs of the
two generators, to reconcile image detail with smoothness.

There is also room for improvement on the cGAN-Final
model with the grayscale intermediate generator. The sec-
ond half of the network is a colorization network; we could
first pretrain this network using a much larger face coloriza-
tion dataset, such as Labeled Faces in the Wild (LFW) [4],
before training this network end-to-end.

Finally, inspired by the skin tone failure modes from
Table 3, an interesting research direction may incorporate
channel autoencoders [8] or another mechanism that allows
manipulation of the latent space of the cGAN, perhaps con-
trolling skin tone, eye color, hair color, and other variables
to correct for incorrect inferences made by the model.
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We have thoroughly enjoyed working on this project, and
hope that you may share the same excitement in reading our
findings.
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M.M. modified the data pipeline code from pix2pix to pull
from multiple dataset folders and to pair up CUHK sketch
images and corresponding face images. J.G. did the same
for the ColorFERET dataset. M.M. extended pix2pix’s pre-
processing code to augment the dataset by randomly crop-
ping both images of a training pair in the same way. J.G.
trained and evaluated the baseline model, and wrote the
code for, trained, and evaluated the four iterative refinement
models by changing the architecture and loss functions of
the baseline. M.M. wrote the code for, trained, and eval-
uated the spectral normalization and self-attention model,
adapting GitHub implementations for spectral normaliza-
tion and self-attention. J.G. implemented the FaceNet em-
bedding evaluation metrics by writing a wrapper around
the FaceNet PyTorch code to make it compatible with the
dataset. M.M. implemented the L1 and L2 evaluation met-
rics and used the skimage package for SSIM evaluation.

For the milestone report, M.M. generated figures and
J.G. wrote the content. For the final report, M.M. extended
Introduction and Related Work, and wrote on the spectral
normalization and self-attention model and analyzed its re-
sults; all other content and figures were written by J.G.
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