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Abstract
In this paper, we present a framework for eval-
uating natural language descriptions in the
color captioning problem. In this task, two
agents are given a set of three colors and one
of them generates a description of a target
color for the other agent. Our approach is
pragmatically motivated: we measure the ef-
fectiveness of a caption in terms of how well
a trained model can select the correct color
given the caption. We investigate four models,
two of which explicitly model pragmatic rea-
soning, and we formulate a performance met-
ric based on Gricean maxims to compare the
effectiveness of the models. Our results indi-
cate that though modeling pragmatic reason-
ing explicitly does improve evaluation perfor-
mance by a small margin, it may not be essen-
tial from a practical perspective. Overall, we
believe this evaluation framework is a promis-
ing start for evaluating natural language de-
scriptions of captioning systems.

1 Introduction

Recently, large natural language generation mod-
els like OpenAI’s GPT-2 have shown an impres-
sive ability to produce human-like utterances. De-
spite these successes, systematically and thor-
oughly measuring the performance of these mod-
els remains elusive.

Currently, there are three main approaches to
evaluate model generated utterances. The most
direct option is to ask humans to judge the qual-
ity of generated content (Hashimoto et al., 2019).
While this is quite effective for assessing language
quality, the cost is prohibitive at larger scales. A
second approach is to use n-gram overlap metrics
that count the number of n-grams that appear in
both a generated utterance and a reference one.
There are a variety of these scores, such as BLEU,
METOER, and CIDEr, and each is used in particu-
lar sub-fields (e.g. translation, summarization, and

image captioning) (Vedantam et al., 2015). These
metrics are somewhat unsatisfying, however, be-
cause they depend on the tokens rather than some
deeper semantic notion. More significantly, these
scores do not correlate particularly well with hu-
man judgments (Novikova et al., 2017). A third
option is to try to learn a metric that produces
a score for utterances that correlates with human
judgments (Cui et al., 2018). These metrics can
be difficult to train reliably and still require hu-
man annotations indicating the quality of machine
generated utterances.

In the following work, we propose a perspec-
tive on this evaluation problem based in grounded
language understanding. Our approach is rooted
in the pragmatic notion that a good utterance is
one that allows another agent to achieve a spe-
cific task. Here, we focus on the Colors in Con-
text task proposed by Monroe et al. (2017). In
this reference game, two agents—a listener and
a speaker—cooperate to distinguish a target color
from two other distractor colors: the speaker pro-
duces an utterance to identify the target and the
listener selects the color they believe is the tar-
get based on the speaker’s description (example
in Figure 2). Taking inspiration from the third
approach to metrics—creating a model to evalu-
ate utterances—we implement a number of mod-
els that try to distinguish between good and bad
speaker captions for describing a target color to a
listener. The main difference in our approach is
that we claim the quality of the caption is based
on the ability of our models to perform the task
rather than predict human ratings of quality.

The core motivation behind our work is that a
good caption is one that allows an average lis-
tener to identify the color that the speaker is de-
scribing. In order to assess computational mod-
els of speakers, we first seek a model that assigns
higher scores to better speakers and lower scores



to worse speakers. Because Monroe et al. (2017)
have shown that explicitly pragmatic agents per-
form better at this task than non-pragmatic agents,
we hypothesize that a metric that explicitly mod-
els pragmatics will correlate better with human
performance than a metric that does not explicitly
take pragmatics into account. Our pragmatic mod-
eling takes two forms. The first is imagination—
the evaluating model tries to recreate the target that
the speaker sees given the context and the caption.
The second is the recursive reasoning of Goodman
and Frank (2016) that has shown a lot of promise
for modeling pragmatic scenarios.

2 Related Work

Much of the work related to ours comes from
the fields of grounded language understanding and
evaluation metrics for generated text, the latter of
which was discussed previously.

2.1 Grounded Language Understanding

The field of grounded language understanding
mainly concerns itself with using language to in-
teract with the world. The grounded reference
games that are ubiquitous in the literature can be
used to model a host of linguistic behavior, from
negotiation dialogues to hyperbole (Lewis et al.,
2017; Kao et al., 2014). The Rational Speech
Acts (RSA) framework proposed by Goodman and
Frank (2016) explicitly encodes the kind of re-
cursive reasoning that improves reference game
performance. Essentially, players reason about
one another’s hypothetical actions when produc-
ing utterances and making choices. Most of these
games involve hand-crafted lexicons, but Andreas
and Klein (2016); Vedantam et al. (2017) and Mao
et al. (2016) extend these notions to more open-
domain vocabularies and realistic images and sce-
narios.

2.2 Color Understanding

A previous attempt at producing captions for
colors was undertaken by McMahan and Stone
(2015). They create a Bayesian model called
LUX to caption single colors in a non-contextual
and non-reference game scenario. Monroe et al.
(2016) improve upon their captions by bringing
in long short-term memory recurrent neural net-
works (LSTMs). The data for a color reference
game was also collected and analyzed by Monroe
et al. (2017), as the way colors are described often

varies based on the colors around them. In their
work, a number of methods similar to those of An-
dreas and Klein (2016) are used to create agents to
model speakers and listeners. With all of this work
done on designing and building these agents, there
has not to our knowledge been work that specifi-
cally uses these techniques for evaluation.

3 Methods and Metrics

We implement four caption evaluation models, as
well as a performance and correlation metric, to
compare their effectiveness. We refer to the eval-
uation models as listener models: given a caption
and color context (the set of three colors), they as-
sign a score to each of the colors, just as a listener
in might implicitly do when selecting a color in a
reference game. We use the score that a listener
model assigns to the target color in a color context
as that listener model’s score for the accompany-
ing caption.

3.1 Feature Representation
Colors are represented as three-dimensional vec-
tors in RGB space, which are then transformed
into a Fourier basis representation, as done by
Monroe et al. (2016). (The Literal Speaker in-
stead uses HSV as the initial color representation
because we find it performs better with HSV). The
Fourier representation captures periodicity in the
base color spaces. We represent captions using to-
ken indices after applying the same preprocessing
procedure as Monroe et al. (2017).

3.2 Models
Three of the four models (the Baseline Listener,
the Literal Listener, and the Pragmatic Listener)
are probabilistic, while the Imaginative Listener
outputs a color distance metric. The Literal Lis-
tener and Pragmatic Listener are based heavily on
(Monroe et al., 2017). The Pragmatic Listener in-
volves a submodel—the Literal Speaker—which
we discuss further below. We illustrate the four
model architectures in Figure 1.

3.2.1 Baseline Listener
We first implement a two-layer baseline network
(Figure 1a), which ignores the caption entirely
and only uses the color inputs to predict the tar-
get color. We expect this model to be effectively
equivalent to educated random guessing. It is still
useful to observe this to confirm that the other
evaluation models are picking up on signal from



the caption in tandem with the color context, rather
than simply predicting the target color from the
color prompt alone.

To use the Baseline Listener as an evaluation
model for captions, we output the probability cor-
responding to the target color.

3.2.2 Literal Listener
Our Literal Listener model is derived from the
Base Listener agent of (Monroe et al., 2017). It
runs a bidirectional LSTM over the utterance to
predict a Gaussian distribution over colors, pa-
rameterized by a mean vector, µ and covariance
matrix Σ. The caption tokens are embedded in a
100-dimensional input space, and the LSTM has
100 hidden dimensions. The output distribution is
sampled at each color representation c in the con-
text to produce a score of the form

Score = (c− µ)TΣ(c− µ).

The scores are normalized using a softmax func-
tion to produce a probability distribution, as shown
in Figure 1b. Like the Baseline Listener, we ex-
tract the probability assigned to the target color
and use this as the Literal Listener’s model score.

3.2.3 Imaginative Listener
Next, we develop an Imaginative Listener (Fig-
ure 1c), which attempts to directly predict the tar-
get color given the caption and two distractor col-
ors. Captions are embedded in a 100-dimensional
input space (initialized with GloVe embeddings)
and are passed through a bidirectional LSTM. The
color representations are embedded using a linear
layer, and the two intermediate representations are
concatenated and passed through two linear layers.

The output is a color in RGB space that repre-
sents the color the listener model predicts is the
target indicated by the speaker. To convert this to
a usable model score, we use the CIEDE 2000 per-
ceptual color difference (Luo et al., 2001) between
the predicted color and target color.

3.2.4 Pragmatic Listener
Finally, we implement a Pragmatic Listener (Fig-
ure 1d), which models recursive reasoning be-
tween a hypothetical speaker and listener, based
on Monroe et al. (2017) and the Rational Speech
Acts model (Goodman and Frank, 2016).

The Pragmatic Listener reasons about the pos-
sible behaviors of a Pragmatic Speaker, which in
turn reasons about the possible behaviors of the

Literal Listener. More precisely, let the Literal
Listener be modeled as L0(t|u,C; θ) where t is a
color, u is an utterance, C is a color context, and θ
are the learned weights (L0 is learned by the model
described in Section 3.2.2).

The Pragmatic Speaker distribution
S1(u|t, C; θ) is determined by L0:

S1(u|t, C; θ) =
L0(t|u,C; θ)α∑

u′∈U L0(t|u,C; θ)α

where α is a parameter controlling the degree of
pragmaticism of the speaker. Loosely, the Prag-
matic Speaker weights an utterance based on how
likely the Literal Listener would respond correctly
to that utterance and normalizes across all utter-
ances in the universal set U .

The Pragmatic Listener model performs similar
reasoning about the Pragmatic Speaker:

L2(t|u,C; θ) =
S1(u|t, C; θ)∑

t′∈C S1(u|t′, C; θ)
.

In order to approximate the normalization in the
Pragmatic Speaker (which cannot be performed
directly, because it sums L0(t|u′, C; θ) over all
u′ ∈ U ), we implement a submodel—the Lit-
eral Speaker—to provide plausible captions over
which the Literal Listener can be sampled. This is
the same approach that Monroe et al. (2017) take.

Literal Speaker The Literal Speaker encodes a
color prompt and generates a caption for the target
color. It consists of two LSTMs. One LSTM runs
over the colors, with the target color last and pro-
duces a representation of the colors. The second
LSTM is the language modeling component—it is
trained to predict the next token in the description
based on previous tokens and the color.

To construct a limited universe U ′ of plausi-
ble captions for the Literal Listener, we randomly
shuffle the color inputs and then iterate through the
three colors as hypothetical targets for the Literal
Speaker to describe. For each color, we generate
k sample captions and add it to U ′. The k sam-
ples are chosen using beam search (where depth
corresponds to the number of tokens) to approxi-
mate the top-k predictions of the Literal Speaker.
The denominator in the Pragmatic Speaker equa-
tion then sums over all u ∈ U ′ rather than the set
of all utterances U .

The Pragmatic Listener performs Bayesian in-
ference on the Literal Listener outputs as de-
scribed above to determine a context-relevant



color prediction. For this model to serve as a cap-
tion evaluation model, we score it using the prob-
ability it assigns to the true target color.

3.3 Performance Metrics

To evaluate our models’ performance, we intro-
duce the True Score and Gricean True Score
(GTS), speaker performance metrics based on the
rate of correct target identification by listeners in
the synthetic dataset. The score SGrice is formu-
lated as SGrice = s

t∗n , Where s is the True Score,
or the average rates of correct target identification
in each 50-round game in the dataset, t is the list
of average listener click times in each game, or the
time stamp of the listener’s clicking on the color
to end the round, and n is the average number of
words in the speaker’s utterance for each game.

The intuition behind the Gricean True Score is
that it augments the simple True Score by encod-
ing the importance of speaker efficiency and ac-
curacy. We expect speakers with higher scores
to exhibit a positive relationship with correct tar-
get identification by listeners, so the average accu-
racy is proportional to SGrice. Conversely, higher
scores should be inversely proportional to the time
it takes the listener to process their utterance (as-
suming a competent listener), as well as the length
(inefficiency) of the speaker’s utterance.

To evaluate our models, we then formulate the
GTS correlation metric using the Gricean True
Score. This metric is the Pearson correlation be-
tween the per-game average target identification
accuracies of a given model and the Gricean True
Scores for the aggregate data (not split by condi-
tion). However, as will later be presented, it is still
informative to also investigate the individual per-
formance metrics of each model on the close, split,
and far conditions separately.

4 Data

4.1 Color Reference Dataset

To develop our evaluation framework, we use the
Color Reference dataset (Monroe et al., 2017).1

Their corpus was created using 967 participants
on Mechanical Turk who played a total of 1,059
reference games with 50 rounds each.

In each game, a participant was assigned to be
either a speaker or a listener. The task of the

1The dataset is open-source and is available at
https://cocolab.stanford.edu/datasets/
colors.html.

speaker was to communicate which of three col-
ors was a specified target color; the listener would
guess the target from the same set of three colors.

The trials were split evenly among three condi-
tions for the color contexts: far, split, and close.
In the far condition, the three colors were far apart
in RGB color space; in the split condition, the tar-
get color was nearby to exactly one of the other
colors; and in the close condition, all three colors
were close in color space. Figure 2 shows three
context-caption pairs, one for each condition.

After data cleansing, the dataset consists of 948
games across 46,994 rounds and 53,365 speaker
utterances. The split provided by Monroe et al.
(2017) has 15,665, 15,670, and 15,659 entries in
the training, development, and testing sets, re-
spectively. For each entry sent, the dataset pro-
vides, among other fields, the following informa-
tion: game identifier, round number, worker iden-
tifier, round condition, time of message, the three
colors and their positions, which color was the
speaker’s target, which color was selected by the
listener, and time of listener’s click.

To train our listener and speaker models, we
ignore listener messages and concatenate speaker
messages within each round.

4.2 Synthetic Data

As explained, our goal is to develop listener mod-
els that can evaluate speaker model captions. To
do this, we want to compare the human listen-
ers’ choices based on captions in the dataset to
our listener models’ choices based on these same
utterances. Our evaluation method thus relies on
the strength of the correlation between these val-
ues. The issue with the Color Reference dataset as
given, however, is that 90% of games result in the
human listener successfully identifying the target
color (97% for far condition, 90% for split, and
and 83% for close). This accuracy imbalance pro-
vides little signal to evaluate between models—
since humans are very good at this task, the ut-
terances they create are all of about equal quality
even when the listener chooses the incorrect color.

To avoid both this issue, we use the raw dataset
to construct a synthetic dataset that includes poor
utterances. To create bad speaker utterances, we
alter the utterances in rounds that the listener got
correct by changing the target color the speaker is
referring to but keeping the caption. For the far
and close conditions, we consider both possible

https://cocolab.stanford.edu/datasets/colors.html
https://cocolab.stanford.edu/datasets/colors.html


(a) Baseline Listener

(b) Literal Listener (c) Imaginative Listener

(d) Pragmatic Listener

Figure 1: Model architectures for the (a) Baseline Listener, (b) Literal Listener, (c) Imaginative Listener, and (d)
Pragmatic Listener.

Figure 2: Example colors and captions for each of the three color conditions in the Color Reference dataset.



distractors as targets, while in the split condition
we only consider the closest distractor. From the
speaker’s perspective, the utterance they produce
is uncooperative and misleading—therefore, a bad
utterance. From the listener’s perspective, nothing
has changed, and the listener takes the same ac-
tion, selecting the same color they did before the
target was switched. This is now an incorrect color
choice.

Out of a mix synthetic and unaltered utterances
we construct “speakers” of varying quality. Each
speaker makes 50 utterances (the length of one of
the reference games). There are an approximately
equal number utterances in each of the close, far
and split conditions. 11 types of synthetic speakers
are created, each with a certain percentage of cor-
rect utterance ranging from 0 to 100%. The correct
and incorrect utterances are also spread as evenly
as possible across the three conditions. There are
47 of each type of speaker for a total of 517 syn-
thetic speakers.

It is important to note that this synthetic dataset
is only used for evaluation, so we create one from
the development set and one from the test set.
This data is not used for training—the developed
metrics are based on the principles of pragmatics,
which depend on the speaker being cooperative.
The speakers in the synthetic data are certainly
not cooperative. This behavior makes them unpre-
dictable and therefore more difficult for the metric
models to learn.

5 Results and Discussion

5.1 Model Hyperparameter Tuning

In order to determine the best hyperparameter set-
tings for each of our models, we perform a grid
search for each listener model, using the average
probability the model places on the target color
across the validation set to score the model’s per-
formance. We do not do this for the baseline
model because it is already performing at the level
of guessing we expect it to be able to achieve.

For the Literal Listener, we try learning rates
lr ∈ {0.0005, 0.001, 0.004, 0.01} and LSTM hid-
den dimension sizes hlstm ∈ {50, 100, 150, 200}.
For the Imaginative Listener, we try the same set
of learning rates and hidden dimension sizes, as
well as the color embedding hidden dimension
size hcol ∈ {50, 100, 150, 200} and w, whether
or not we use GloVe vectors in the weight ma-
trix. For the Pragmatic Listener, we try the val-

ues {0.5, 1, 2} for the α parameter. For the Lit-
eral Speaker submodel, we use the hyperparame-
ters identified by Monroe et al. (2017).

We find that the following combinations of hy-
perparameters result in the highest score on the de-
velopment set for our listener models:

• Literal Listener: lr = 0.0005, hlstm = 100

• Imaginative Listener: lr = 0.001, hlstm =
50, hcol = 50, w = True

• Pragmatic Listener: α = 0.5

5.2 Performance Metrics

To calculate the GTS correlation metric for each
of our models, we choose the best hyperparame-
ter setting for each of our models and train each
model 10 times, each time with a random initial-
ization, and run each of these models on the test
set and calculate their correlation metric. (For
the Pragmatic Listener, we keep the the trained
submodels fixed to express the randomness of the
Pragmatic Listener through the sampling proce-
dure.) Here, we present the average GTS correla-
tion metrics of these trials for each model for each
of the close, split, and far conditions in Table 1
and Figure 2, as well as in aggregate (the aggre-
gate data not split by condition). We also include
the corresponding margins of error given these re-
peated trials.

In addition, we report the accuracy of the Imag-
inative Listener in terms of mean color distance
rather than whether the closest color is the target.
This is because in the split and close conditions, all
of the colors are close, so it is more difficult for the
closest to be the target, whereas in the far condi-
tion, the generated color just has be distant enough
from the distractors to be closest to the target.

To provide a more visual examination of each
model’s score correlation patterns, we also plot the
model scores against the Gricean True Scores and
True Scores for each condition in Figure 3.

Across the board, as expected, the close and
split conditions have lower correlations than the
far condition. In addition, the Pragmatic Lis-
tener edges out the Literal Listener by a small,
yet significant margin, which performs better than
the Imaginative Listener. The Imaginative Lis-
tener’s worse performance makes sense because it
needs to synthesize, as opposed to select, the color.
The latter result also supports our hypothesis that



ρaggregate ρclose ρsplit ρfar Accuracy / Distance
Baseline 0.0151± 0.0234 −0.0010± 0.0258 0.0022± 0.0307 0.0210± 0.0276 0.0201± 0.0177
Literal 0.9572± 0.0021 0.8647± 0.0078 0.8899± 0.0074 0.9467± 0.0014 0.4599± 0.0012
Imaginative 0.8882± 0.0024 0.4474± 0.0087 0.5298± 0.0138 0.8664± 0.0087 24.0609± 0.0662
Pragmatic 0.9617± 0.0001 0.8845± 0.0004 0.9047± 0.0003 0.9486± 0.0001 0.4531± 0.0004

Table 1: Mean performance metrics (correlation metrics ρ) for the Baseline, Literal, Imaginative, and Pragmatic
Listener models with 95% confidence intervals. Imaginative Listener correlations are negated for consistency, as
discussed in Figure 4. Accuracy refers to mean target identification accuracy for all models except Imaginative
Listener, where it refers to mean perceptual distance to target in color space. Because half of the synthetic test data
is intentionally misleading, perfect model accuracy should be 50%. Bolded values are the best-performing values.

incorporating pragmatic reasoning into the Prag-
matic Listener model boosts performance.

6 Discussion and Analysis

Overall, our models performed quite well and
mostly aligned with our hypotheses.

The Baseline Listener performed at random.
Note that random in this scenario is not 33%: in
the split condition, the only two viable choices
are the ones that are close to each other, so the
expected performance is 1

3(50%) + 2
3(33%) =

38%. This means our baseline was able to learn
some notion of color similarity and then randomly
guessed among equally plausible choices.

Next, the Imaginative Listener performed worst
out of the three models we experimented with.
This is contrary to our hypothesis that the Imag-
inative Listener would perform better than the Lit-
eral Listener because its architecture is pragmati-
cally motivated. The relatively worse performance
can be explained by the fact that Imaginative Lis-
tener does not have access to the target color and
has to synthesize it, whereas the other models
merely had to select it. Intuitively, the reason for
the worse performance is similar to why a “fill-in-
the-blank” question is more difficult than a mul-
tiple choice exam. Looking at the different con-
ditions can provide further insight. We see that
most of its correlation can be attributed to the col-
ors generated in the far condition, which were
very distant from the targets when the captions
were poor. We can also see that regardless of the
Gricean True Score of the speaker, the split and
close conditions tended to lead to color predictions
that were visually closer to the targets compared to
the far condition. This is likely because the colors
the model was conditioning on were more similar
to the targets.

The lack of correlation between Gricean True

Scores and Imaginative Listener model scores is
likely due to the prevalence of negation and com-
paratives in the split and close conditions that do
not appear in the far condition. Monroe et al.
(2017) notes that in the more difficult conditions,
human speakers rely more heavily on compara-
tives and negations to distinguish colors. This
means there might be more distracting signal in
the caption that the Imaginative Listener picks up
on and converts to color. It could also mean that
speakers rely more on adjectives for disambigua-
tion without actually mentioning the colors—e.g.,
“the bright one” does not give the network much
signal for the actual color that should be produced.

Finally, it’s interesting to note that the Literal
Listener and Pragmatic Listener performed simi-
larly well, especially on the far condition. How-
ever, true to our hypothesis, of the differences we
do see, the close and split conditions see the largest
gains from the Pragmatic Listener, which is where
we would expect the recursive reasoning to help.
The correlations between the Gricean True Scores
and the model scores were high for both, so both
can serve as viable caption evaluation models. The
similarity implies that the pragmatic sampling pro-
cedure did not greatly impact the performance of
the Literal Listener. This is puzzling from a theo-
retical perspective, but good from an implementa-
tion perspective because the Pragmatic Listener is
more computationally expensive.

The tight confidence intervals and similarity of
the scores across random initializations is promis-
ing as well, as it implies that our models are likely
finding equally good optima during training.

7 Conclusion and Future Work

This work explores a novel framework for evalu-
ation of natural language descriptions in the color
captioning problem. We present four models: a



(a) Baseline Listener (b) Literal Listener

(c) Imaginative Listener (d) Pragmatic Listener

Figure 3: Examples of model correlation patterns between model scores and Gricean True Scores for the various
listener models. Note that the Imaginative Listener is expected to have negative correlation because the model
score is the distance between the target and generated color; therefore, for evaluation, we negate this score.

Figure 4: Model score correlations with Gricean True
Scores across the different models and conditions.
Each bar represents the average of ten trials and has
error bars with 95% confidence intervals.

Baseline Listener, Literal Listener, Imaginative
Listener, and Pragmatic Listener. We also present
the Gricean True Score (GTS) correlation metric
for evaluating model efficacy. We find that the
Imaginative Listener does not perform as well as
the Literal and Pragmatic Listeners. Moreover,
as hypothesized, we find that modeling pragmatic
reasoning in the Pragmatic Listener does offer im-
provement over the Literal Listener in terms of
the GTS Correlation, though it is more computa-
tionally expensive due to its recursive inference.
Overall, we believe the framework of using a per-
formance metric like the GTS to evaluate caption-
ing models is a promising direction for future re-
search.

We envision multiple ways to extend this work.
In terms of color captioning, there is room to ex-
plore better baseline models, performance metrics,
and more advanced pragmatic reasoning models.
In the bigger picture, we are interested in extend-
ing this framework to non-contextual settings and
other grounded language tasks, such as image cap-
tion evaluation. This might take the form of using
the caption to recreate salient features of an im-
age, and a good caption would be one where these
features can faithfully be recreated.
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