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Abstract

While most natural language models in recent
years have been focused on performing spe-
cific contextual tasks, it’s also of interest to
find ways to incorporate prior knowledge and
non-contextual, general world knowledge into
speaker-listener interactions. In this paper,
we present a framework for modeling com-
mon ground between speakers and listeners in
the context of reference games. We present
a Speaker-Listener model with separate net-
works for each of the agents performing a
color reference game task, and we augment
this simpler model with a differential neural
computer (DNC) to model the common ground
between the speaker and listener. The hypoth-
esis was that initializing the DNC with non-
contextual color encodings would allow the
DNC model to achieve higher accuracies in
the reference game task. Though this did not
turn out to be the case, likely due to insufficient
training and possibly unsuitable color repre-
sentations, we hope that this work lays down
the framework for future work in modeling
common ground and using ungrounded knowl-
edge to enhance performance in grounded lan-
guage tasks.

1 Introduction

Whether writing a blog post, negotiating a car
price, or having a conversation with friends, lan-
guage provides a means to express desires and
achieve goals. Despite this fact, much of the cur-
rent research in natural language processing and
understanding is focused on solving discrete tasks
such as sentiment analysis or question answering.
Such a narrow focus does not easily allow for con-
sideration of the motivations behind why some one
expresses a certain sentiment or why they are ask-
ing a question that needs answering. As artifi-
cial agents that use natural language are increas-
ingly interacting with non-experts who have non-

academic goals and intentions, these agents need
to develop more robust models of human cogni-
tion, social structures, and language to effectively
communicate with and understand the goals of
their users.

Models that do explicitly take into account hu-
man goals do exist, and are ubiquitous in the cog-
nitive science literature. One such model that has
received a lot of attention recently is the Rational
Speech Acts model (RSA) (Goodman and Frank,
2016). The RSA model codifies the idea that when
communicating, one ought to consider the goals of
an conversational partner by relying on the strong
inductive bias that all reasoning related to com-
munication is recursive. In other words, when
a speaker is communicating with a listener, the
speaker chooses an utterance from a set of possi-
ble utterances by considering which utterance will
best make the listener understand what the speaker
is thinking. RSA-style models have mostly been
used in the context of reference games. In these
scenarios, there are usually two agents and a num-
ber of items. One agent, the speaker, has to gen-
erate a natural language utterance to get the other
agent, the listener, to select some item that only
the speaker knows is the target. In addition to pre-
dicting outcomes in reference games, RSA models
been found to predict human actions in a variety of
scenarios ranging from hyperbole and metaphor to
negotiation tactics (Lewis et al., 2017) (Kao et al.,
2014). Recently, they have also been integrated
with neural models and improved predictions in
more realistic settings, such as with images and
natural language utterances [(Cohn-Gordon et al.),
(Monroe et al., 2017), (Vedantam et al.), (Andreas
and Klein, 2016)].

While these models are able to capture human-
like reasoning in these situations, they do not cur-
rently provide any way to incorporate memories
from previous interactions between agents in the



model. Additionally, these models only capture
language used in these grounded, reference game
contexts, while humans tend to possess knowledge
about more general abstract forms apart from these
limiting contexts. In this project, our goals are
two-fold. First, we seek to expand the recursive
reasoning in the RSA model to include a form of
memory by incorporating a differentiable neural
computer (DNC) (Graves et al., 2016). Second,
we plan to seed the DNC with an abstract vocab-
ulary derived from an ungrounded context to try
to improve performance at generating effective,
human-like referring expressions in the context of
a color reference game.

2 Related Work

2.1 Common Ground Modeling

The field of common ground modeling is often in-
tertwined with the field of knowledge modeling in
general. Traditional approaches involve creating
databases that are queried based on some salient
quality of the knowledge that is being recorded.
These approaches work when there are fixed, non-
deterministic key value pairs or relationships, but
in traditional knowledge modeling systems, these
cannot be learned and therefore provide limited
insight into how knowledge modeling actually
works in the human brain (Devedzic, 2001).

2.2 Computational Pragmatics

Much of the related work comes from the field
of computational pragmatics. As mentioned ear-
lier, RSA has been successful in describing certain
phenomena such as metaphor, hyperbole, negotia-
tion, and reference game scenarios. There is some
work extending RSA to multiple turn dialogues,
where the speaker and listener have a conversation
(Khani et al., 2018). This idea is most similar to
ours because it involves longer-term planning, but
there is no work that we know of so far that ex-
plicitly reasons across multiple games or rounds
the way we are modeling with the differentiable
neural computer.

2.3 Differentiable Neural Computer

The differentiable neural computer (DNC) model
has provided a good way to incorporate long term
memory into neural networks. Traditional recur-
rent neural networks such as LSTMs do have ca-
pacity for some long term memory, but their mem-
ory is weak over longer time scales (Khandelwal

Figure 1: Sample game from (Monroe et al., 2017).
The target color is boxed in red on the left.

et al., 2018). DNCs address this problem and
have been used for a range of tasks that traditional
LSTMs have difficulty performing such as pattern
copying, nearest neighbors, long-term planning,
and question answering (Graves et al., 2016).

3 Methods

In this section, we describe the sources of our data
and the models we propose.

3.1 Data
We are going to be addressing this problem in
the context of a color reference game created by
(Monroe et al., 2017). The data were collected in
a human experiment performed as follows. Two
people were shown three colored squares in a ran-
domized order where the colors were of varying
similarity. One participant (the speaker) had to
generate a natural language utterance to try to get
another participant (the listener) to select a target
color that only the speaker knew. The data set con-
tains approximately 50,000 referring expressions
generated from this game. We are going to use this
data set to train and evaluate our speaker and lis-
tener models. An example of what this data looks
like is in Figure 1.

To obtain the non-contextual color representa-
tions the DNC is trained with, we are going to
use another dataset of single colors and captions.
These data have been collected by (Munroe, 2010)
and cleaned by (McMahan and Stone, 2015). In
these data collecting scenarios, human participants
just had to label individual colors outside of a ref-
erence game scenario. There were approximately
200,000 participants labeling about 5 million col-
ors, which provides a reasonable amount of data
for training.



3.2 Models
• Speaker-Listener Model (no common

ground): Our first model is derived from the
models of (Monroe et al., 2017). It involves
two components: a literal listener and a
literal speaker. The literal speaker acts as a
conditional language model. It principally
consists of two LSTMs. The first LSTM runs
over the colors, with the target color last and
produces a representation of all the colors.
The second LSTM is the language modeling
component—it is trained to predict the next
token in the description based on previous
tokens and the color encoding. The literal
listener does the reverse: given an utterance,
it runs its own LSTM over the utterance to
produce a mean vector, µ, and co-variance
matrix, Σ, that it uses to score each potential
color, c:

Score = (c− µ)TΣ(c− µ)

A softmax is then computed over the scores
to select the color that is most likely target.

Together, these models are assessed by play-
ing the reference game: the literal speaker
is presented with a context with the target
color explicitly labeled, and creates an utter-
ance. The literal listener then has to interpret
this utterance by greedily sampling the most
probable next token (essentially performing
beam search with a beam size of 1). Their
joint success at communicating the correct
color forms the basis of their assessment. The
Literal Speaker was trained for 30 epochs
with the aid of GloVe embeddings (Penning-
ton et al., 2014), and the Literal Listener was
trained for 5 epochs. The 54-dimensional
Fourier transform color representations of the
colors, as discussed in (Monroe et al., 2017),
were used.

A visual representation of this architecture is
visible in Figure 2.

• DNC Model (with common ground): We
hypothesize that by that by including a differ-
entiable neural computer that stores color in-
formation as part of the inference procedure,
we will be able to beat the performance of
our Speaker-Listener model at this task. The
DNC will be included as follows. First, us-
ing the dataset provided by (McMahan and

Stone, 2015), the DNC will be trained with
an autoencoder objective. We will use an en-
coding of the color as the read and write keys
and an encoding of the color name will be
stored in the DNC. This color name encod-
ing will then be used to attempt to recreate
the original color used as the key. These will
be trained on the non-contextual color cap-
tions.

At inference time, while playing the contex-
tual color reference game, the DNC will be be
queried with each of the colors presented and
the representations extracted will be used as
the color representations in the literal listener
and speaker, rather than the raw color values
(or their Fourier transforms as (Monroe et al.,
2017) uses).

In a sense, we are testing a portion of
the proposition that Graves et al. (Graves
et al., 2016) put forth in their Merlin sys-
tem. They use a variational autoencoder
and a DNC to learn how to store compact
state representations that help their agent
perform well on a number of tasks with-
out explicit training. By training our DNC
on an autoencoding objective, we hope that
the the DNC will learn to store representa-
tions that will help color-game playing agents
in their downstream contextual task. The
DNC was trained for 5 epochs, once with 3-
dimensional RGB color representations and
once with 54-dimensional Fourier transform
representations of the colors as detailed in
(Monroe et al., 2017). Note that we had to
train each model multiple times before ob-
taining our final models, and each training
took almost an entire day, so we were not able
to train as many models as we would have
liked.

4 Results and Discussion

To score our models, we feed each the speaker
model a color context (set of three colors) from the
dataset, obtain a natural language utterance, which
we feed as input to the listener. If the listener then
selects the correct color, we consider this a cor-
rect answer. Our accuracy metric for the overall
joint model is the rate at which the listener model
selects the correct color.



Joint Accuracy Listener-Only Accuracy
Human Speaker and Listener 0.90∗ —
Speaker-Listener 0.7304 0.7438
DNC Model, RGB Colors 0.3231 0.3333
DNC Model, Fourier Colors 0.3334 0.3335

Table 1: Joint accuracy (listener accuracy when paired speaker, which is given the color context) and listener-only
accuracy (listener accuracy when given the color context and the corresponding human-produced utterance) for
both the joint Speaker-Listener model and the DNC Model on the test set, as well as the human accuracy for
reference. Bolded values are the best-performing values. ∗Human accuracy was only given in (Monroe et al.,
2017) to two decimal places.

Figure 2: Speaker-Listener model architecture with
Literal Speaker above and Literal Listener below.

Figure 3: DNC model architecture. The DNC Speaker
Model acts as a language model.

4.1 Overall Results

The performance of both our Speaker-Listener
model and the DNC Model are shown in Table
1. We calculate the accuracy of the models where
both our speaker and listener models are used, as
well as the listener-only accuracy, or the accuracy
achieved when only our listener model is used
and its input is instead the human utterances di-
rectly from the dataset. Contrary to our hypoth-
esis, the Speaker-Listener model performs much
better than the models that incorporate a DNC.

First, the joint accuracy of our Speaker-Listener
model using both the speaker and the listener mod-
els we implemented is only marginally less than
the listener-only accuracy. This means that the
speaker model we implemented performs well at
producing informative utterances that are similar
in quality to those produced by the humans in the
dataset.

Turning to the DNC Model using RGB (3-
dimensional) representations, the joint accuracy
and listener-only accuracy were both approxi-
mately one-third. Though this is unexpected, it is
explainable. Upon further investigation into the
representations of colors that the DNC model con-
structed, we noticed that every sequence of tokens
generated by the DNC, regardless of the color in-
put, was the start token followed by the end token.
We posit that the reason for this degeneracy is that
there is insufficient signal in the RGB represen-
tations of the colors to learn complex mappings
from tokens to colors. This means that the lis-
tener model effectively performed random guess-
ing on the choices it was given, which comes out
to around 1

3 because there are three color choices
per context.

Finally, for the DNC Model with Fourier color
(54-dimensional) representations, we also achieve
a similar accuracy level that amounts to random



guessing. While the tokens generated by the DNC
queries were not simply start and end tokens, the
mappings learned were rather nonsensical and did
not contain intuitive words that described the col-
ors. More importantly the representations pro-
duced for all colors were identical–consisting of
the single token “electric”. Since the listener was
trained on human utterances, it makes sense that
the DNC speaker did not offer any informative in-
formation about the colors, resulting in random
guesses from the listener. This would be intu-
itively equivalent to having the listener select from
three squares that are all the same color, which
would result in random guessing.

We suspect that the poor performance of the
DNC Model, both with RGB and with Fourier
color representations, may be due to the amount of
epochs for which the DNC was trained. Since the
DNC was extremely expensive to train, we were
only able to train it for 5 epochs. Even though the
loss decreased significantly from the first epoch to
the fifth (1.208 to 0.2493), and there should have
been enough signal in the Fourier transform repre-
sentations of the colors, the DNC likely just didn’t
see the colors frequently enough to create mean-
ingful representations. For future work, we would
like to explore training the model much more to
see if it can avoid degeneracy and better model
common ground.

4.2 Speaker Model Caption Generation
without Common Ground

The Speaker-Listener model performed quite well
in terms of accuracy without any common ground
modeling, and we would like to highlight some ex-
amples of color contexts and corresponding cap-
tions generated by the speaker in Figure 4. In
the first and second contexts, we have three col-
ors that are very similar. However, the model still
produces an utterance that exhibits some level of
distinguishing between the colors.

In the first context, we see that the first color is
more purple and the other two are more pink, and
the model outputs purple. Similarly, in the second
context, the first color has the largest hint of blue
in it, and the model outputs blue to distinguish it
from the others. It’s especially interesting that the
human speaker in this case also chose the exact
same utterance.

In the third context, we have two colors that are
relatively similar (the two greens)—impressively,

Human: lightest Model: purple

Human: blue Model: blue

Human: mint green Model: bright green

Human: orange Model: orange

Human: orange-red Model: red

Figure 4: Examples of color contexts and captions gen-
erated by the speaker in the Speaker-Listener model,
along with corresponding human utterances.



the model qualifies the green by outputting bright
green to distinguish it from the duller green. The
human speaker chooses to qualify the green with
mint instead, but the intent is similar in that both
recognize the need to distinguish the target from
another similar distractor.

In the fourth and fifth contexts, the target color
is clearly distinguishable from the other two col-
ors. For the fourth context, the model behaves as
expected and outputs the same utterance as the hu-
man speaker—orange. For the fifth context, the
model outputs red, which is accurate and suffi-
cient to distinguish between this color and the oth-
ers. Interestingly, however, the human speaker
actually gives more qualifying information than
the model and says orange-red despite the lack
of other oranges or reds in the context. This is
likely because the human has ungrounded knowl-
edge of the canonical “red” that English speakers
are most familiar with, and since this color doesn’t
necessarily align perfectly with that prior knowl-
edge, the human speaker felt the need to qualify
the statement. The model, on the other hand, has
learned to use the most efficient statement it needs
to complete the task, and in this context, there is
no need for qualification. It also does not have
any form of common ground, which can also con-
tribute to this bluntness.

In examining all of these examples, it is clear
that the model has learned a mapping from utter-
ances to colors and has learned some level of dis-
ambiguation between similar colors when they are
present in the same context. Quite promising is the
similarity between the utterances produced by the
model and by the human speaker. Future work in
modeling the impact of ungrounded knowledge on
verbosity, of the sort illustrated in the fifth exam-
ple in Figure 4, would also be interesting.

5 Conclusion and Future Work

In this work, we explored two ways to model
agents in reference games using neural networks:
a Speaker-Listener neural network with LSTM
networks for both the speaker and listener, as
well as a similar joint network that uses a dif-
ferentiable neural computer to act as a language
model that models common ground between the
speaker and listener. We used the Colors in Con-
text dataset (Monroe et al., 2017), from which we
obtained color representations of the colors in the
reference game. For the DNC, we used the non-

contextual color descriptions dataset (Munroe,
2010) to model prior ungrounded knowledge of
colors. While the DNC Model did not perform as
well as the Speaker-Listener model, we were able
to achieve pretty impressive accuracies with the
Speaker-Listener model, which also had reason-
able natural language utterances from the speaker
that resulted in a listener accuracy similar to that
achieved when human utterances were used.

In terms of future work, we see a lot of room
for improvement upon this framework for model-
ing common ground. First, we do hope to be able
to train the DNC for many more epochs to give the
model a fair chance to learn proper representations
of colors. We also hope to explore using other
color representations and speaker and listener ar-
chitectures to model common ground. Another
exciting potential area of exploration would be to
jointly train a speaker and listener model end-to-
end, rather than separately as done in this work,
to see if the common ground can be utilized even
better. Constraints on the models would need to be
applied so that the intermediate representations are
intelligible natural language utterances and thus
interpretable. This might also increase the accu-
racy of the models and bring the models closer to
performing at the level of human accuracy. Fi-
nally, as mentioned, more work on modeling the
impact of ungrounded knowledge—both helpful
and potentially over-informative—on speaker ut-
terances in contextual tasks is also of interest.

Acknowledgements

As we used similar datasets in another collabora-
tive effort that also used the literal speaker imple-
mentation, we would like to thank our collabora-
tor for that project, Suvir Mirchandani, for his as-
sistance in developing the literal speaker sampling
methodology.

References
Jacob Andreas and Dan Klein. 2016. Reasoning

about Pragmatics with Neural Listeners and Speak-
ers. Technical report.

Reuben Cohn-Gordon, Noah Goodman, and Chris
Potts. Pragmatically Informative Image Captioning
with Character-Level Inference. Technical report.

Vladan Devedzic. 2001. Knowledge modeling–state
of the art. Integrated Computer-Aided Engineering,
8(3):257–281.

http://github. https://www.aclweb.org/anthology/D16-1125
http://github. https://www.aclweb.org/anthology/D16-1125
http://github. https://www.aclweb.org/anthology/D16-1125
http://arxiv.org/abs/1804.05417v2
http://arxiv.org/abs/1804.05417v2


Noah D Goodman and Michael C Frank. 2016. Prag-
matic language interpretation as probabilistic infer-
ence. Trends in cognitive sciences, 20(11):818–829.

Alex Graves, Greg Wayne, Malcolm Reynolds,
Tim Harley, Ivo Danihelka, Agnieszka Grabska-
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